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Chapter 1

Slice Timing

Contents

1 O B T v 20

111 SesSION . v v v v e e e e e e e e e e e e e e 20
1.2 Number of Slices . . . . . . ¢ v i i i i i i it e e e e e e e e e e 20
1.3 TR . i it e e e e e e e e e e e e e e e e e e e e e e e 20
1 N 20
1.5 Sliceorder. . . . .« . v v v v i v v i i it e et e e e e e e e e e 20
1.6 Reference Slice . . . . . . . i v i i i i i i i it e e e e e e e e 21
1.7 Filename Prefix . . . . . . . o 0 i i i i i i i i i it et e e e e e e 21

Correct differences in image acquisition time between slices. Slice-time corrected files are
prepended with an ’a’.

Note: The sliceorder arg that specifies slice acquisition order is a vector of N numbers, where
N is the number of slices per volume. Each number refers to the position of a slice within the
image file. The order of numbers within the vector is the temporal order in which those slices
were acquired. To check the order of slices within an image file, use the SPM Display option and
move the cross-hairs to a voxel co-ordinate of z=1. This corresponds to a point in the first slice
of the volume.

The function corrects differences in slice acquisition times. This routine is intended to correct
for the staggered order of slice acquisition that is used during echo-planar scanning. The correction
is necessary to make the data on each slice correspond to the same point in time. Without
correction, the data on one slice will represent a point in time as far removed as 1/2 the TR from
an adjacent slice (in the case of an interleaved sequence).

This routine "shifts" a signal in time to provide an output vector that represents the same
(continuous) signal sampled starting either later or earlier. This is accomplished by a simple shift
of the phase of the sines that make up the signal. Recall that a Fourier transform allows for a
representation of any signal as the linear combination of sinusoids of different frequencies and
phases. Effectively, we will add a constant to the phase of every frequency, shifting the data in
time.

Shifter - This is the filter by which the signal will be convolved to introduce the phase shift.
It is constructed explicitly in the Fourier domain. In the time domain, it may be described as
an impulse (delta function) that has been shifted in time the amount described by TimeShift.
The correction works by lagging (shifting forward) the time-series data on each slice using sinc-
interpolation. This results in each time series having the values that would have been obtained
had the slice been acquired at the same time as the reference slice. To make this clear, consider
a neural event (and ensuing hemodynamic response) that occurs simultaneously on two adjacent
slices. Values from slice "A" are acquired starting at time zero, simultaneous to the neural event,
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20 CHAPTER 1. SLICE TIMING

while values from slice "B" are acquired one second later. Without correction, the "B" values
will describe a hemodynamic response that will appear to have began one second EARLIER on
the "B" slice than on slice "A". To correct for this, the "B" values need to be shifted towards
the Right, i.e., towards the last value.

This correction assumes that the data are band-limited (i.e. there is no meaningful information
present in the data at a frequency higher than that of the Nyquist). This assumption is support
by the study of Josephs et al (1997, Neurolmage) that obtained event-related data at an effective
TR of 166 msecs. No physio-logical signal change was present at frequencies higher than our
typical Nyquist (0.25 HZ).

When using the slice timing correction it is very important that you input the correct slice
order, and if there is any uncertainty then users are encouraged to work with their physicist to
determine the actual slice acquisition order.

One can also consider augmenting the model by including the temporal derivative in the
informed basis set instead of slice timing, which can account for +/- 1 second of changes in
timing.

Written by Darren Gitelman at Northwestern U., 1998. Based (in large part) on ACQCOR-
RECT.PRO from Geoff Aguirre and Eric Zarahn at U. Penn.

1.1 Data

Subjects or sessions. The same parameters specified below will be applied to all sessions.

1.1.1 Session

Select images to slice-time correct.

1.2 Number of Slices

Enter the number of slices.

1.3 TR

Enter the TR (in seconds).

1.4 TA

Enter the TA (in seconds). It is usually calculated as TR-(TR/nslices). You can simply enter
this equation with the variables replaced by appropriate numbers.

If the next two items are entered in milliseconds, this entry will not be used and can be set
to 0.

1.5 Slice order

Enter the slice order. Bottom slice = 1. Sequence types and examples of code to enter are given
below:

ascending (first slice=bottom): [1:1:nslices|

descending (first slice=top): [nslices:-1:1]

interleaved (middle-top):

for k = 1:nslices

round((nslices-k) /2 + (rem((nslices-k),2) * (nslices - 1)/2)) + 1,

end

interleaved (bottom -> up): [1:2:nslices 2:2:nslices]

interleaved (top -> down): [nslices:-2:1, nslices-1:-2:1]

Alternatively you can enter the slice timing in ms for each slice individually.
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If doing so, the next item (Reference Slice) will contain a reference time (in ms) instead of
the slice index of the reference slice.

For Siemens scanners, this can be acquired in MATLAB from the dicom header as follows
(use any volume after the first one):

hdr = spm_dicom headers(’dicom.ima’);

slice times = hdrl.Private 0019 1029

Note that slice ordering is assumed to be from foot to head. If it is not, enter instead: TR -
INTRASCAN TIME - SLICE_TIMING _VECTOR

1.6 Reference Slice

Enter the reference slice.
If slice times are provided instead of slice indices in the previous item, this value should
represent a reference time (in ms) instead of the slice index of the reference slice.

1.7 Filename Prefix

Specify the string to be prepended to the filenames of the slice-time corrected image file(s).
Default prefix is ’a’.
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Chapter 2

Realign

Contents
2.1 Realign: Estimate . .. .. ... ... ... .00 25
2.1.1 Data . . . . oL 25
2.1.2  Estimation Options . . . . . . . . . .. e 26
2.2 Realign: Reslice . ... ... ... .. i, 27
2.2.1 Images . . . . . .o e e e 27
2.2.2 Reslice Options . . . . . . . . . . . 27
2.3 Realign: Estimate & Reslice . . . . . . ... ... ... ... ..., 28
231 Data . . . .. o e e 28
2.3.2  Estimation Options . . . . . . . .. .. .. oo 28
2.3.3 Reslice Options . . . . . . . . .. . e 29

Within-subject registration of image time series.

2.1 Realign: Estimate

This routine realigns a time-series of images acquired from the same subject using a least squares
approach and a 6 parameter (rigid body) spatial transformation [31]. The first image in the
list specified by the user is used as a reference to which all subsequent scans are realigned.
The reference scan does not have to the the first chronologically and it may be wise to chose a
"representative scan" in this role.

The aim is primarily to remove movement artefact in fMRI and PET time-series (or more
generally longitudinal studies). The headers are modified for each of the input images, such that.
they reflect the relative orientations of the data. The details of the transformation are displayed
in the results window as plots of translation and rotation. A set of realignment parameters are
saved for each session, named rp_*.txt. These can be modelled as confounds within the general
linear model [31].

2.1.1 Data

Add new sessions for this subject. In the coregistration step, the sessions are first realigned to
each other, by aligning the first scan from each session to the first scan of the first session. Then
the images within each session are aligned to the first image of the session. The parameter esti-
mation is performed this way because it is assumed (rightly or not) that there may be systematic
differences in the images between sessions.

25
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Session

Select scans for this session. In the coregistration step, the sessions are first realigned to each other,
by aligning the first scan from each session to the first scan of the first session. Then the images
within each session are aligned to the first image of the session. The parameter estimation is
performed this way because it is assumed (rightly or not) that there may be systematic differences
in the images between sessions.

2.1.2 Estimation Options

Various registration options. If in doubt, simply keep the default values.

Quality

Quality versus speed trade-off. Highest quality (1) gives most precise results, whereas lower
qualities gives faster realignment. The idea is that some voxels contribute little to the estimation
of the realignment parameters. This parameter is involved in selecting the number of voxels that
are used.

Separation

The separation (in mm) between the points sampled in the reference image. Smaller sampling
distances gives more accurate results, but will be slower.

Smoothing (FWHM)

The FWHM of the Gaussian smoothing kernel (mm) applied to the images before estimating the
realignment parameters.

* PET images typically use a 7 mm kernel.

* MRI images typically use a 5 mm kernel.

Num Passes

Register to first: Images are registered to the first image in the series. Register to mean: A two
pass procedure is used in order to register the images to the mean of the images after the first
realignment.

PET images are typically registered to the mean. This is because PET data are more noisy
than fMRI and there are fewer of them, so time is less of an issue.

MRI images are typically registered to the first image. The more accurate way would be to
use a two pass procedure, but this probably wouldn’t improve the results so much and would take
twice as long to run.

Interpolation

The method by which the images are sampled when estimating the optimum transformation.
Higher degree interpolation methods provide the better interpolation, but they are slower because
they use more neighbouring voxels [93, 94, 95].

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed. Also the
recommended option if you are not really sure.

Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).
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Weighting

The option of providing a weighting image to weight each voxel of the reference image differently
when estimating the realignment parameters. The weights are proportional to the inverses of the
standard deviations. This would be used, for example, when there is a lot of extra-brain motion
- e.g., during speech, or when there are serious artifacts in a particular region of the images.

2.2 Realign: Reslice

This function reslices a series of registered images such that they match the first image selected
voxel-for-voxel. The resliced images are named the same as the originals, except that they are
prefixed by 'r’.

2.2.1 Images

Select scans to reslice to match the first.

2.2.2 Reslice Options

Various reslicing options. If in doubt, simply keep the default values.

Resliced images

All Tmages (1..n) : This reslices all the images - including the first image selected - which will
remain in its original position.

Images 2..n : Reslices images 2..n only. Useful for if you wish to reslice (for example) a PET
image to fit a structural MRI, without creating a second identical MRI volume.

All Images + Mean Image : In addition to reslicing the images, it also creates a mean of the
resliced image.

Mean Image Only : Creates the mean resliced image only.

Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not recommended for image realignment. Trilinear Interpolation is
probably OK for PET, but not so suitable for fMRI because higher degree interpolation generally
gives better results [93, 94, 95]. Although higher degree methods provide better interpolation,
but they are slower because they use more neighbouring voxels. Fourier Interpolation [24, 20] is
another option, but note that it is only implemented for purely rigid body transformations. Voxel
sizes must all be identical and isotropic.

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed.

Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).
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Filename Prefix

Specify the string to be prepended to the filenames of the resliced image file(s). Default prefix is

)

T

2.3 Realign: Estimate & Reslice

This routine realigns a time-series of images acquired from the same subject using a least squares
approach and a 6 parameter (rigid body) spatial transformation [31]. The first image in the
list specified by the user is used as a reference to which all subsequent scans are realigned.
The reference scan does not have to be the first chronologically and it may be wise to chose a
"representative scan" in this role.

The aim is primarily to remove movement artefact in fMRI and PET time-series (or more
generally longitudinal studies) [4]. The headers are modified for each of the input images, such
that. they reflect the relative orientations of the data. The details of the transformation are dis-
played in the results window as plots of translation and rotation. A set of realignment parameters
are saved for each session, named rp_*.txt. After realignment, the images are resliced such that
they match the first image selected voxel-for-voxel. The resliced images are named the same as
the originals, except that they are prefixed by 'r’.

2.3.1 Data

Add new sessions for this subject. In the coregistration step, the sessions are first realigned to
each other, by aligning the first scan from each session to the first scan of the first session. Then
the images within each session are aligned to the first image of the session. The parameter esti-
mation is performed this way because it is assumed (rightly or not) that there may be systematic
differences in the images between sessions.

Session

Select scans for this session. In the coregistration step, the sessions are first realigned to each other,
by aligning the first scan from each session to the first scan of the first session. Then the images
within each session are aligned to the first image of the session. The parameter estimation is
performed this way because it is assumed (rightly or not) that there may be systematic differences
in the images between sessions.

2.3.2 Estimation Options

Various registration options. If in doubt, simply keep the default values.

Quality

Quality versus speed trade-off. Highest quality (1) gives most precise results, whereas lower
qualities gives faster realignment. The idea is that some voxels contribute little to the estimation
of the realignment parameters. This parameter is involved in selecting the number of voxels that
are used.

Separation
The separation (in mm) between the points sampled in the reference image. Smaller sampling
distances gives more accurate results, but will be slower.

Smoothing (FWHM)

The FWHM of the Gaussian smoothing kernel (mm) applied to the images before estimating the
realignment parameters.

* PET images typically use a 7 mm kernel.

* MRI images typically use a 5 mm kernel.
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Num Passes

Register to first: Images are registered to the first image in the series. Register to mean: A two
pass procedure is used in order to register the images to the mean of the images after the first
realignment.

PET images are typically registered to the mean. This is because PET data are more noisy
than fMRI and there are fewer of them, so time is less of an issue.

MRI images are typically registered to the first image. The more accurate way would be to
use a two pass procedure, but this probably wouldn’t improve the results so much and would take
twice as long to run.

Interpolation

The method by which the images are sampled when estimating the optimum transformation.
Higher degree interpolation methods provide the better interpolation, but they are slower because
they use more neighbouring voxels [93, 94, 95].

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed. Also the
recommended option if you are not really sure.

Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Weighting

The option of providing a weighting image to weight each voxel of the reference image differently
when estimating the realignment parameters. The weights are proportional to the inverses of the
standard deviations. This would be used, for example, when there is a lot of extra-brain motion
- e.g., during speech, or when there are serious artifacts in a particular region of the images.

2.3.3 Reslice Options

Various reslicing options. If in doubt, simply keep the default values.

Resliced images

All Tmages (1..n) : This reslices all the images - including the first image selected - which will
remain in its original position.

Images 2..n : Reslices images 2..n only. Useful for if you wish to reslice (for example) a PET
image to fit a structural MRI, without creating a second identical MRI volume.

All Images + Mean Image : In addition to reslicing the images, it also creates a mean of the
resliced image.

Mean Image Only : Creates the mean resliced image only.

Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not recommended for image realignment. Trilinear Interpolation is
probably OK for PET, but not so suitable for fMRI because higher degree interpolation generally
gives better results [93, 94, 95]. Although higher degree methods provide better interpolation,
but they are slower because they use more neighbouring voxels. Fourier Interpolation [24, 20] is
another option, but note that it is only implemented for purely rigid body transformations. Voxel
sizes must all be identical and isotropic.



30 CHAPTER 2. REALIGN

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed.

Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

Filename Prefix

Specify the string to be prepended to the filenames of the resliced image file(s). Default prefix is

T,
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Within-subject registration and unwarping of time series.

The realignment part of this routine realigns a time-series of images acquired from the same
subject using a least squares approach and a 6 parameter (rigid body) spatial transformation.
The first image in the list specified by the user is used as a reference to which all subsequent
scans are realigned. The reference scan does not have to the the first chronologically and it may
be wise to chose a "representative scan" in this role.
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The aim is primarily to remove movement artefact in fMRI and PET time-series (or more
generally longitudinal studies). This affects the header of each of the input images which contains
details about the voxel-to-world mapping. The details of the transformation are displayed in the
results window as plots of translation and rotation. A set of realignment parameters are saved
for each session, named rp_*.txt.

In the coregistration step, the sessions are first realigned to each other, by aligning the first
scan from each session to the first scan of the first session. Then the images within each session
are aligned to the first image of the session. The parameter estimation is performed this way
because it is assumed (rightly or not) that there may be systematic differences in the images
between sessions.

See spm__uw__estimate.m for a detailed description of the implementation.

Even after realignment there is considerable variance in fMRI time series that covary with,
and is most probably caused by, subject movements [2]. It is also the case that this variance
is typically large compared to experimentally induced variance. Anyone interested can include
the estimated movement parameters as covariates in the design matrix, and take a look at an F-
contrast encompassing those columns. It is quite dramatic. The result is loss of sensitivity, and if
movements are correlated to task specificity. I.e. we may mistake movement induced variance for
true activations. The problem is well known, and several solutions have been suggested. A quite
pragmatic (and conservative) solution is to include the estimated movement parameters (and
possibly squared) as covariates in the design matrix. Since we typically have loads of degrees of
freedom in fMRI we can usually afford this. The problems occur when movements are correlated
with the task, since the strategy above will discard "good" and "bad" variance alike (i.e. remove
also "true" activations).

The "covariate" strategy described above was predicated on a model where variance was
assumed to be caused by "spin history" effects, but will work pretty much equally good/bad
regardless of what the true underlying cause is. Others have assumed that the residual variance
is caused mainly by errors introduced by the interpolation kernel in the resampling step of the
realignment. One has tried to solve this through higher order resampling (huge Sinc kernels, or
k-space resampling). Unwarp is based on a different hypothesis regarding the residual variance.
EPI images are not particularly faithful reproductions of the object, and in particular there are
severe geometric distortions in regions where there is an air-tissue interface (e.g. orbitofrontal
cortex and the anterior medial temporal lobes). In these areas in particular the observed image is
a severely warped version of reality, much like a funny mirror at a fair ground. When one moves
in front of such a mirror ones image will distort in different ways and ones head may change from
very elongated to seriously flattened. If we were to take digital snapshots of the reflection at
these different positions it is rather obvious that realignment will not suffice to bring them into
a common space.

The situation is similar with EPI images, and an image collected for a given subject position
will not be identical to that collected at another. We call this effect susceptibility-by-movement
interaction. Unwarp is predicated on the assumption that the susceptibility-by-movement inter-
action is responsible for a sizable part of residual movement related variance.

Assume that we know how the deformations change when the subject changes position (i.e.
we know the derivatives of the deformations with respect to subject position). That means
that for a given time series and a given set of subject movements we should be able to predict
the "shape changes" in the object and the ensuing variance in the time series. It also means
that, in principle, we should be able to formulate the inverse problem, i.e. given the observed
variance (after realignment) and known (estimated) movements we should be able to estimate
how deformations change with subject movement. We have made an attempt at formulating
such an inverse model, and at solving for the "derivative fields". A deformation field can be
thought of as little vectors at each position in space showing how that particular location has
been deflected. A "derivative field" is then the rate of change of those vectors with respect to
subject movement. Given these "derivative fields" we should be able to remove the variance
caused by the susceptibility-by-movement interaction. Since the underlying model is so restricted
we would also expect experimentally induced variance to be preserved. Our experiments have
also shown this to be true.

In theory it should be possible to estimate also the "static" deformation field, yielding an
unwarped (to some true geometry) version of the time series. In practise that doesn’t really seem
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to work. Hence, the method deals only with residual movement related variance induced by the
susceptibility-by-movement interaction. This means that the time-series will be undistorted to
some "average distortion" state rather than to the true geometry. If one wants additionally to
address the issue of anatomical fidelity one should combine Unwarp with a measured fieldmap.

The description above can be thought of in terms of a Taylor expansion of the field as a
function of subject movement. Unwarp alone will estimate the first (and optionally second, see
below) order terms of this expansion. It cannot estimate the zeroth order term (the distortions
common to all scans in the time series) since that doesn’t introduce (almost) any variance in the
time series. The measured fieldmap takes the role of the zeroth order term. Refer to the FieldMap
toolbox and the documents FieldMap.man and FieldMap _principles.man for a description of how
to obtain fieldmaps in the format expected by Unwarp.

If we think of the field as a function of subject movement it should in principle be a function
of six variables since rigid body movement has six degrees of freedom. However, the physics of
the problem tells us that the field should not depend on translations nor on rotation in a plane
perpendicular to the magnetic flux. Hence it should in principle be sufficient to model the field
as a function of out-of-plane rotations (i.e. pitch and roll). One can object to this in terms
of the effects of shimming (object no longer immersed in a homogenous field) that introduces
a dependence on all movement parameters. In addition SPM/Unwarp cannot really tell if the
transversal slices it is being passed are really perpendicular to the flux or not. In practice it turns
out thought that it is never (at least we haven’t seen any case) necessary to include more than
Pitch and Roll. This is probably because the individual movement parameters are typically highly
correlated anyway, which in turn is probably because most heads that we scan are attached to a
neck around which rotations occur. On the subject of Taylor expansion we should mention that
there is the option to use a second-order expansion (through the defaults) interface. This implies
estimating also the rate-of-change w.r.t. to some movement parameter of the rate-of-change of
the field w.r.t. some movement parameter (colloquially known as a second derivative). It can be
quite interesting to watch (and it is amazing that it is possible) but rarely helpful/necessary.

In the defaults there is also an option to include Jacobian intensity modulation when estimat-
ing the fields. "Jacobian intensity modulation" refers to the dilution/concentration of intensity
that ensue as a consequence of the distortions. Think of a semi-transparent coloured rubber sheet
that you hold against a white background. If you stretch a part of the sheet (induce distortions)
you will see the colour fading in that particular area. In theory it is a brilliant idea to include
also these effects when estimating the field (see e.g. Andersson et al, Neurolmage 20:870-888).
In practice for this specific problem it is NOT a good idea.

It should be noted that this is a method intended to correct data afflicted by a particular
problem. If there is little movement in your data to begin with this method will do you little
good. If on the other hand there is appreciable movement in your data (>1deg) it will remove
some of that unwanted variance. If, in addition, movements are task related it will do so without
removing all your "true" activations. The method attempts to minimise total (across the image
volume) variance in the data set. It should be realised that while (for small movements) a rather
limited portion of the total variance is removed, the susceptibility-by-movement interaction effects
are quite localised to "problem" areas. Hence, for a subset of voxels in e.g. frontal-medial and
orbitofrontal cortices and parts of the temporal lobes the reduction can be quite dramatic (>90).
The advantages of using Unwarp will also depend strongly on the specifics of the scanner and
sequence by which your data has been acquired. When using the latest generation scanners
distortions are typically quite small, and distortion-by-movement interactions consequently even
smaller. A small check list in terms of distortions is

a) Fast gradients->short read-out time->small distortions

b) Low field (i.e. <3T)->small field changes->small distortions
c¢) Low res (64x64)->short read-out time->small distortions

d) SENSE/SMASH->short read-out time->small distortions

If you can tick off all points above chances are you have minimal distortions to begin with
and Unwarp might not be of use to you.
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3.1 Data

Data sessions to unwarp.

3.1.1 Session

Only add similar session data to a realign+unwarp branch, i.e., choose Data or Data-+phase map
for all sessions, but don’t use them interchangeably.

In the coregistration step, the sessions are first realigned to each other, by aligning the first
scan from each session to the first scan of the first session. Then the images within each session
are aligned to the first image of the session. The parameter estimation is performed this way
because it is assumed (rightly or not) that there may be systematic differences in the images
between sessions.

Images

Select scans for this session.

In the coregistration step, the sessions are first realigned to each other, by aligning the first
scan from each session to the first scan of the first session. Then the images within each session
are aligned to the first image of the session. The parameter estimation is performed this way
because it is assumed (rightly or not) that there may be systematic differences in the images
between sessions.

Phase map (vdm* file)

Select pre-calculated phase map, or leave empty for no phase correction. The vdm* file is assumed
to be already in alignment with the first scan of the first session.

3.2 Estimation Options

Various registration options that could be modified to improve the results. Whenever possible,
the authors of SPM try to choose reasonable settings, but sometimes they can be improved.

3.2.1 Quality

Quality versus speed trade-off. Highest quality (1) gives most precise results, whereas lower
qualities gives faster realignment. The idea is that some voxels contribute little to the estimation
of the realignment parameters. This parameter is involved in selecting the number of voxels that
are used.

3.2.2 Separation

The separation (in mm) between the points sampled in the reference image. Smaller sampling
distances gives more accurate results, but will be slower.

3.2.3 Smoothing (FWHM)

The FWHM of the Gaussian smoothing kernel (mm) applied to the images before estimating the
realignment parameters.

* PET images typically use a 7 mm kernel.

* MRI images typically use a 5 mm kernel.

3.2.4 Num Passes

Register to first: Images are registered to the first image in the series. Register to mean: A two
pass procedure is used in order to register the images to the mean of the images after the first
realignment.

* PET images are typically registered to the mean.
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* MRI images are typically registered to the first image.

3.2.5 Interpolation

The method by which the images are sampled when estimating the optimum transformation.
Higher degree interpolation methods provide the better interpolation, but they are slower because
they use more neighbouring voxels [93, 94, 95].

3.2.6 Wrapping

These are typically:
* No wrapping - for images that have already been spatially transformed.
* Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

3.2.7 Weighting

The option of providing a weighting image to weight each voxel of the reference image differently
when estimating the realignment parameters. The weights are proportional to the inverses of the
standard deviations. For example, when there is a lot of extra-brain motion - e.g., during speech,
or when there are serious artifacts in a particular region of the images.

3.3 Unwarp Estimation Options

Various registration & unwarping estimation options.

3.3.1 Basis Functions

Number of basis functions to use for each dimension. If the third dimension is left out, the order
for that dimension is calculated to yield a roughly equal spatial cut-off in all directions. Default:
[12 12 *]

3.3.2 Regularisation

Unwarp looks for the solution that maximises the likelihood (minimises the variance) while si-
multaneously maximising the smoothness of the estimated field (c.f. Lagrange multipliers). This
parameter determines how to balance the compromise between these (i.e. the value of the multi-
plier). Test it on your own data (if you can be bothered) or go with the defaults.

Regularisation of derivative fields is based on the regorder’th (spatial) derivative of the field.
The choices are 0, 1, 2, or 3. Default: 1

3.3.3 Reg. Factor

Regularisation factor. Default: Medium.

3.3.4 Jacobian deformations

In the defaults there is also an option to include Jacobian intensity modulation when estimating
the fields. "Jacobian intensity modulation” refers to the dilution/concentration of intensity that
ensue as a consequence of the distortions. Think of a semi-transparent coloured rubber sheet
that you hold against a white background. If you stretch a part of the sheet (induce distortions)
you will see the colour fading in that particular area. In theory it is a brilliant idea to include
also these effects when estimating the field (see e.g. Andersson et al, Neurolmage 20:870-888).
In practice for this specific problem it is NOT a good idea. Default: No
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3.3.5 First-order effects

Theoretically (ignoring effects of shimming) one would expect the field to depend only on subject
out-of-plane rotations. Hence the default choice ("Pitch and Roll", i.e., [4 5]). Go with that
unless you have very good reasons to do otherwise

Vector of first order effects to model. Movements to be modelled are referred to by number.
1= x translation; 2= y translation; 3= z translation 4 = x rotation, 5 = y rotation and 6 = z
rotation.

To model pitch & roll enter: [4 5]

To model all movements enter: [1:6]

Otherwise enter a customised set of movements to model

3.3.6 Second-order effects

List of second order terms to model second derivatives of. This is entered as a vector of movement
parameters similar to first order effects, or leave blank for NONE

Movements to be modelled are referred to by number:

1= x translation; 2= y translation; 3= z translation 4 = x rotation, 5 = y rotation and 6 = z
rotation.

To model the interaction of pitch & roll enter: [4 5]

To model all movements enter: [1:6]

The vector will be expanded into an n x 2 matrix of effects. For example [4 5] will be expanded
to:

[44

45

55|

3.3.7 Smoothing for unwarp (FWHM)
FWHM (mm) of smoothing filter applied to images prior to estimation of deformation fields.

3.3.8 Re-estimate movement params

Re-estimation means that movement-parameters should be re-estimated at each unwarping iter-
ation. Default: Yes.

3.3.9 Number of Iterations

Maximum number of iterations. Default: 5.

3.3.10 Taylor expansion point

Point in position space to perform Taylor-expansion around. Choices are ("First’, 'Last’ or ’Av-
erage’). 'Average’ should (in principle) give the best variance reduction. If a field-map acquired
before the time-series is supplied then expansion around the ’First’ MIGHT give a slightly better
average geometric fidelity.

3.4 Unwarp Reslicing Options

Various registration & unwarping estimation options.

3.4.1 Resliced images (unwarp)?

All Tmages (1..n)
This reslices and unwarps all the images.
All Images + Mean Image
In addition to reslicing the images, it also creates a mean of the resliced images.
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3.4.2 Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not recommended for image realignment. Trilinear Interpolation is
probably OK for PET, but not so suitable for fMRI because higher degree interpolation generally
gives better results [93, 94, 95]. Although higher degree methods provide better interpolation,
but they are slower because they use more neighbouring voxels.

3.4.3 Wrapping

These are typically:
* No wrapping - for images that have already been spatially transformed.
* Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

3.4.4 Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

3.4.5 Filename Prefix

Specify the string to be prepended to the filenames of the smoothed image file(s). Default prefix
is 'u’.
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Within-subject registration using a rigid-body model. A rigid-body transformation (in 3D)
can be parameterised by three translations and three rotations about the different axes.

You get the options of estimating the transformation, reslicing images according to some
rigid-body transformations, or estimating and applying rigid-body transformations.

4.1 Coregister: Estimate

The registration method used here is based on work by Collignon et al [19]. The original interpo-
lation method described in this paper has been changed in order to give a smoother cost function.
The images are also smoothed slightly, as is the histogram. This is all in order to make the cost
function as smooth as possible, to give faster convergence and less chance of local minima.

At the end of coregistration, the voxel-to-voxel affine transformation matrix is displayed, along
with the histograms for the images in the original orientations, and the final orientations. The
registered images are displayed at the bottom.

Registration parameters are stored in the headers of the "source" and the "other" images.

4.1.1 Reference Image

This is the image that is assumed to remain stationary (sometimes known as the target or template
image), while the source image is moved to match it.
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4.1.2 Source Image

This is the image that is jiggled about to best match the reference.

4.1.3 Other Images

These are any images that need to remain in alignment with the source image.

4.1.4 Estimation Options

Various registration options, which are passed to the Powell optimisation algorithm [39].

Objective Function

Registration involves finding parameters that either maximise or minimise some objective func-
tion. For inter-modal registration, use Mutual Information [19, 97], Normalised Mutual Infor-
mation [92], or Entropy Correlation Coefficient [70].For within modality, you could also use Nor-
malised Cross Correlation.

Separation

The average distance between sampled points (in mm). Can be a vector to allow a coarse regis-
tration followed by increasingly fine ones.

Tolerances

The accuracy for each parameter. Iterations stop when differences between successive estimates
are less than the required tolerance.

Histogram Smoothing

Gaussian smoothing to apply to the 256x256 joint histogram. Other information theoretic coreg-
istration methods use fewer bins, but Gaussian smoothing seems to be more elegant.

4.2 Coregister: Reslice
Reslice images to match voxel-for-voxel with an image defining some space. The resliced images

are named the same as the originals except that they are prefixed by 'r’.

4.2.1 Image Defining Space

This is analogous to the reference image. Images are resliced to match this image (providing they
have been coregistered first).

4.2.2 Images to Reslice

These images are resliced to the same dimensions, voxel sizes, orientation etc as the space defining
image.

4.2.3 Reslice Options

Various reslicing options.
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Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not normally recommended. It can be useful for re-orienting images while
preserving the original intensities (e.g. an image consisting of labels). Trilinear Interpolation is
OK for PET, or realigned and re-sliced fMRI. If subject movement (from an fMRI time series)
is included in the transformations then it may be better to use a higher degree approach. Note
that higher degree B-spline interpolation [93, 94, 95] is slower because it uses more neighbours.

Wrapping

These are typically:
No wrapping - for PET or images that have already been spatially transformed.
Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

Filename Prefix

Specify the string to be prepended to the filenames of the resliced image file(s). Default prefix is

)

T

4.3 Coregister: Estimate & Reslice

The registration method used here is based on work by Collignon et al [19]. The original interpo-
lation method described in this paper has been changed in order to give a smoother cost function.
The images are also smoothed slightly, as is the histogram. This is all in order to make the cost
function as smooth as possible, to give faster convergence and less chance of local minima.

At the end of coregistration, the voxel-to-voxel affine transformation matrix is displayed, along
with the histograms for the images in the original orientations, and the final orientations. The
registered images are displayed at the bottom.

Registration parameters are stored in the headers of the "source" and the "other" images.
These images are also resliced to match the source image voxel-for-voxel. The resliced images are
named the same as the originals except that they are prefixed by 'r’.

4.3.1 Reference Image

This is the image that is assumed to remain stationary (sometimes known as the target or template
image), while the source image is moved to match it.

4.3.2 Source Image

This is the image that is jiggled about to best match the reference.

4.3.3 Other Images

These are any images that need to remain in alignment with the source image.

4.3.4 Estimation Options

Various registration options, which are passed to the Powell optimisation algorithm [89].
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Objective Function

Registration involves finding parameters that either maximise or minimise some objective func-
tion. For inter-modal registration, use Mutual Information [19, 97], Normalised Mutual Infor-
mation [92], or Entropy Correlation Coefficient [70].For within modality, you could also use Nor-
malised Cross Correlation.

Separation

The average distance between sampled points (in mm). Can be a vector to allow a coarse regis-
tration followed by increasingly fine ones.

Tolerances

The accuracy for each parameter. Iterations stop when differences between successive estimates
are less than the required tolerance.

Histogram Smoothing

Gaussian smoothing to apply to the 256x256 joint histogram. Other information theoretic coreg-
istration methods use fewer bins, but Gaussian smoothing seems to be more elegant.

4.3.5 Reslice Options

Various reslicing options.

Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not normally recommended. It can be useful for re-orienting images while
preserving the original intensities (e.g. an image consisting of labels). Trilinear Interpolation is
OK for PET, or realigned and re-sliced fMRI. If subject movement (from an fMRI time series)
is included in the transformations then it may be better to use a higher degree approach. Note
that higher degree B-spline interpolation [93, 94, 95] is slower because it uses more neighbours.

Wrapping

These are typically:
No wrapping - for PET or images that have already been spatially transformed.
Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

Filename Prefix

Specify the string to be prepended to the filenames of the resliced image file(s). Default prefix is

b

T
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This procedure is an extension of the old unified segmentation algorithm (and was known as
"New Segment" in SPM8). The algorithm is essentially the same as that described in the Unified
Segmentation paper, except for (i) a slightly different treatment of the mixing proportions, (ii)
the use of an improved registration model, (iii) the ability to use multi-spectral data, (iv) an
extended set of tissue probability maps, which allows a different treatment of voxels outside the
brain. Some of the options in the toolbox do not yet work, and it has not yet been seamlessly
integrated into the SPMS8 software. Also, the extended tissue probability maps need further
refinement. The current versions were crudely generated (by JA) using data that was kindly
provided by Cynthia Jongen of the Imaging Sciences Institute at Utrecht, NL.

This function segments, bias corrects and spatially normalises - all in the same model [g].
Many investigators use tools within older versions of SPM for a technique that has become
known as "optimised" voxel-based morphometry (VBM). VBM performs region-wise volumetric
comparisons among populations of subjects. It requires the images to be spatially normalised,
segmented into different tissue classes, and smoothed, prior to performing statistical tests [98,

, 0, 7]. The "optimised" pre-processing strategy involved spatially normalising subjects’ brain
images to a standard space, by matching grey matter in these images, to a grey matter reference.
The historical motivation behind this approach was to reduce the confounding effects of non-brain
(e.g. scalp) structural variability on the registration. Tissue classification in older versions of SPM
required the images to be registered with tissue probability maps. After registration, these maps
represented the prior probability of different tissue classes being found at each location in an
image. Bayes rule can then be used to combine these priors with tissue type probabilities derived
from voxel intensities, to provide the posterior probability.
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This procedure was inherently circular, because the registration required an initial tissue clas-
sification, and the tissue classification requires an initial registration. This circularity is resolved
here by combining both components into a single generative model. This model also includes
parameters that account for image intensity non-uniformity. Estimating the model parameters
(for a maximum a posteriori solution) involves alternating among classification, bias correction
and registration steps. This approach provides better results than simple serial applications of
each component.

5.1 Data

Specify the number of different channels (for multi-spectral classification). If you have scans of
different contrasts for each of the subjects, then it is possible to combine the information from
them in order to improve the segmentation accuracy. Note that only the first channel of data is
used for the initial affine registration with the tissue probability maps.

5.1.1 Channel

Specify a channel for processing. If multiple channels are used (eg PD & T2), then the same
order of subjects must be specified for each channel and they must be in register (same position,
size, voxel dims etc..). The different channels can be treated differently in terms of inhomogeneity
correction etc. You may wish to correct some channels and save the corrected images, whereas
you may wish not to do this for other channels.

Volumes

Select scans from this channel for processing. If multiple channels are used (eg T1 & T2), then
the same order of subjects must be specified for each channel and they must be in register (same
position, size, voxel dims etc..).

Bias regularisation

MR images are usually corrupted by a smooth, spatially varying artifact that modulates the
intensity of the image (bias). These artifacts, although not usually a problem for visual inspection,
can impede automated processing of the images.

An important issue relates to the distinction between intensity variations that arise because
of bias artifact due to the physics of MR scanning, and those that arise due to different tissue
properties. The objective is to model the latter by different tissue classes, while modelling the
former with a bias field. We know a priori that intensity variations due to MR physics tend
to be spatially smooth, whereas those due to different tissue types tend to contain more high
frequency information. A more accurate estimate of a bias field can be obtained by including prior
knowledge about the distribution of the fields likely to be encountered by the correction algorithm.
For example, if it is known that there is little or no intensity non-uniformity, then it would be
wise to penalise large values for the intensity non-uniformity parameters. This regularisation can
be placed within a Bayesian context, whereby the penalty incurred is the negative logarithm of a
prior probability for any particular pattern of non-uniformity.

Knowing what works best should be a matter of empirical exploration. For example, if your
data has very little intensity non-uniformity artifact, then the bias regularisation should be in-
creased. This effectively tells the algorithm that there is very little bias in your data, so it does
not try to model it.

Bias FWHM

FWHM of Gaussian smoothness of bias. If your intensity non-uniformity is very smooth, then
choose a large FWHM. This will prevent the algorithm from trying to model out intensity variation
due to different tissue types. The model for intensity non-uniformity is one of i.i.d. Gaussian
noise that has been smoothed by some amount, before taking the exponential. Note also that
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smoother bias fields need fewer parameters to describe them. This means that the algorithm is
faster for smoother intensity non-uniformities.

Save Bias Corrected

This is the option to save a bias corrected version of your images from this channel, or/and the
estimated bias field. MR images are usually corrupted by a smooth, spatially varying artifact
that modulates the intensity of the image (bias). These artifacts, although not usually a problem
for visual inspection, can impede automated processing of the images. The bias corrected version
should have more uniform intensities within the different types of tissues.

5.2 Tissues

The data for each subject are classified into a number of different tissue types. The tissue types
are defined according to tissue probability maps, which define the prior probability of finding a
tissue type at a particular location. Typically, the order of tissues is grey matter, white matter,
CSF, bone, soft tissue and air/background (if using tpm/TPM.nii).

5.2.1 Tissue

A number of options are available for each of the tissues. You may wish to save images of some
tissues, but not others. If planning to use Dartel, then make sure you generate “imported” tissue
class images of grey and white matter (and possibly others). Different numbers of Gaussians may
be needed to model the intensity distributions of the various tissues.

Tissue probability map

Select the tissue probability image for this class. These should be maps of eg grey matter, white
matter or cerebro-spinal fluid probability. A nonlinear deformation field is estimated that best
overlays the tissue probability maps on the individual subjects’ image.

Rather than assuming stationary prior probabilities based upon mixing proportions, additional
information is used, based on other subjects’ brain images. Priors are usually generated by
registering a large number of subjects together, assigning voxels to different tissue types and
averaging tissue classes over subjects. Three tissue classes are used: grey matter, white matter
and cerebro-spinal fluid. A fourth class is also used, which is simply one minus the sum of the
first three. These maps give the prior probability of any voxel in a registered image being of any
of the tissue classes - irrespective of its intensity.

The model is refined further by allowing the tissue probability maps to be deformed according
to a set of estimated parameters. This allows spatial normalisation and segmentation to be
combined into the same model.

Num. Gaussians

The number of Gaussians used to represent the intensity distribution for each tissue class can be
greater than one. In other words, a tissue probability map may be shared by several clusters.
The assumption of a single Gaussian distribution for each class does not hold for a number of
reasons. In particular, a voxel may not be purely of one tissue type, and instead contain signal
from a number of different tissues (partial volume effects). Some partial volume voxels could fall
at the interface between different classes, or they may fall in the middle of structures such as the
thalamus, which may be considered as being either grey or white matter. Various other image
segmentation approaches use additional clusters to model such partial volume effects. These
generally assume that a pure tissue class has a Gaussian intensity distribution, whereas intensity
distributions for partial volume voxels are broader, falling between the intensities of the pure
classes. Unlike these partial volume segmentation approaches, the model adopted here simply
assumes that the intensity distribution of each class may not be Gaussian, and assigns belonging
probabilities according to these non-Gaussian distributions. Typical numbers of Gaussians could
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be two for grey matter, two for white matter, two for CSF, three for bone, four for other soft
tissues and two for air (background).

Note that if any of the Num. Gaussians is set to non-parametric, then a non-parametric
approach will be used to model the tissue intensities. This may work for some images (eg CT),
but not others - and it has not been optimised for multi-channel data. Note that it is likely to be
especially problematic for images with poorly behaved intensity histograms due to aliasing effects
that arise from having discrete values on the images.

Native Tissue

The native space option allows you to produce a tissue class image (c*) that is in alignment with
the original (see Figure 29.1). It can also be used for “importing” into a form that can be used
with the Dartel toolbox (rc*).

Warped Tissue

You can produce spatially normalised versions of the tissue class - both with (mwc*) and without
(wc*) modulation (see below). These can be used for voxel-based morphometry. All you need to
do is smooth them and do the stats.

“Modulation” is to compensate for the effect of spatial normalisation. When warping a series
of images to match a template, it is inevitable that volumetric differences will be introduced into
the warped images. For example, if one subject’s temporal lobe has half the volume of that of
the template, then its volume will be doubled during spatial normalisation. This will also result
in a doubling of the voxels labelled grey matter. In order to remove this confound, the spatially
normalised grey matter (or other tissue class) is adjusted by multiplying by its relative volume
before and after warping. If warping results in a region doubling its volume, then the correction
will halve the intensity of the tissue label. This whole procedure has the effect of preserving the
total amount of grey matter signal in the normalised partitions. Actually, in this version of SPM
the warped data are not scaled by the Jacobian determinants when generating the "modulated"
data. Instead, the original voxels are projected into their new location in the warped images. This
exactly preserves the tissue count, but has the effect of introducing aliasing artifacts - especially
if the original data are at a lower resolution than the warped images. Smoothing should reduce
this artifact though.

Note also that the "unmodulated" data are generated slightly differently in this version of
SPM. In this version, the projected data are corrected using a kind of smoothing procedure. This
is not done exactly as it should be done (to save computational time), but it does a reasonable
job. It also has the effect of extrapolating the warped tissue class images beyond the range of
the original data. This extrapolation is not perfect, as it is only an estimate, but it may still be
a good thing to do.

5.3 Warping & MRF

A number of warping options are provided, but the main one that you could consider changing is
the one for specifying whether deformation fields or inverse deformation fields should be generated.

5.3.1 MRF Parameter

When tissue class images are written out, a few iterations of a simple Markov Random Field
(MRF) cleanup procedure are run. This parameter controls the strength of the MRF. Setting the
value to zero will disable the cleanup.

5.3.2 Clean Up

This uses a crude routine for extracting the brain from segmented images. It begins by taking
the white matter, and eroding it a couple of times to get rid of any odd voxels. The algorithm
continues on to do conditional dilations for several iterations, where the condition is based upon
gray or white matter being present.This identified region is then used to clean up the grey and
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white matter partitions. Note that the fluid class will also be cleaned, such that aqueous and
vitreous humour in the eyeballs, as well as other assorted fluid regions (except CSF) will be
removed.

If you find pieces of brain being chopped out in your data, then you may wish to disable or
tone down the cleanup procedure. Note that the procedure uses a number of assumptions about
what each tissue class refers to. If a different set of tissue priors are used, then this routine should
be disabled.

5.3.3 Warping Regularisation

Registration involves simultaneously minimising two terms. One of these is a measure of similarity
between the images (mean-squared difference in the current situation), whereas the other is a
measure of the roughness of the deformations. This measure of roughness involves the sum of the
following terms:

* Absolute displacements need to be penalised by a tiny amount. The first element encodes
the amount of penalty on these. Ideally, absolute displacements should not be penalised, but it
is necessary for technical reasons.

* The ‘membrane energy’ of the deformation is penalised (2nd element), usually by a relatively
small amount. This penalises the sum of squares of the derivatives of the velocity field (ie the
sum of squares of the elements of the Jacobian tensors).

* The ‘bending energy’ is penalised (3rd element). This penalises the sum of squares of the
2nd derivatives of the velocity.

* Linear elasticity regularisation is also included (4th and 5th elements). The first parameter
(mu) is similar to that for linear elasticity, except it penalises the sum of squares of the Jacobian
tensors after they have been made symmetric (by averaging with the transpose). This term
essentially penalises length changes, without penalising rotations.

* The final term also relates to linear elasticity, and is the weight that denotes how much to
penalise changes to the divergence of the velocities (lambda). This divergence is a measure of the
rate of volumetric expansion or contraction.

The amount of regularisation determines the tradeoff between the terms. More regularisation
gives smoother deformations, where the smoothness measure is determined by the bending energy
of the deformations.

5.3.4 Affine Regularisation

The procedure is a local optimisation, so it needs reasonable initial starting estimates. Images
should be placed in approximate alignment using the Display function of SPM before beginning.
A Mutual Information affine registration with the tissue probability maps (D’Agostino et al,
2004) is used to achieve approximate alignment. Note that this step does not include any model
for intensity non-uniformity. This means that if the procedure is to be initialised with the affine
registration, then the data should not be too corrupted with this artifact.If there is a lot of
intensity non-uniformity, then manually position your image in order to achieve closer starting
estimates, and turn off the affine registration.

Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). For example, if registering to an image in ICBM/MNI
space, then choose this option. If registering to a template that is close in size, then select the
appropriate option for this.

5.3.5 Smoothness

For PET or SPECT, set this value to about 5 mm, or more if the images have smoother noise.
For MRI, you can usually use a value of 0 mm. This is used to derive a fudge factor to account
for correlations between neighbouring voxels. Smoother data have more spatial correlations,
rendering the assumptions of the model inaccurate.
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5.3.6 Sampling distance

This encodes the approximate distance between sampled points when estimating the model pa-
rameters. Smaller values use more of the data, but the procedure is slower and needs more
memory. Determining the “best” setting involves a compromise between speed and accuracy.

5.3.7 Deformation Fields

Deformation fields can be saved to disk, and used by the Deformations Utility. For spatially
normalising images to MNI space, you will need the forward deformation, whereas for spatially
normalising (eg) GIFTI surface files, you’ll need the inverse. It is also possible to transform data in
MNTI space on to the individual subject, which also requires the inverse transform. Deformations
are saved as .nii files, which contain three volumes to encode the x, y and z coordinates.
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There are two components to spatial normalisation: There is the estimation part,
whereby a deformation is estimated by deforming template data to match an
individual scan; And there is the actual writing of the spatially normalised

images, using the previously estimated deformation.

This is a vanilla approach to spatial normalisation.

It is not generally recommended for morphometric studies, or other studies of
differences among populations.

The reason is that the atlas data will differ systematically from the data under study,
which is likely to lead to an inherently biased set of findings.

6.1 Normalise: Estimate

Spatial normalisation is now done via the segmentation routine (which was known as “New Seg-
ment” in SPMS). The algorithm is essentially the same as that described in the Unified Segmen-
tation paper [3], except for (i) a slightly different treatment of the mixing proportions, (ii) the use
of an improved registration model, (iii) the ability to use multi-spectral data, (iv) an extended
set of tissue probability maps, which allows a different treatment of voxels outside the brain.

Note that on a 32 bit computer, the most memory that SPM or any other program can use at
any time is 4Gbytes (or sometimes only 2Gbytes). This is because the largest number that can
be represented with 32 bits is 4,294,967,295, which limits how much memory may be addressed
by any one process. Out of memory errors may occasionally be experienced when trying to work
with large images. 64-bit computers can usually handle such cases.

If you encounter problems with spatial normalisation, it is advisable to use the Check reg
button to see how well aligned the original data are with the MNI-space templates released with
SPM. If mis-alignment is greater than about 3cm and 15 degrees, you could try to manually
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re-position the images prior to attempting to align them. This may be done using the Display
button.

6.1.1 Data

List of subjects. Images of each subject should be warped differently.

Subject

Data for this subject. The same parameters are used within subject.

Image to Align The image that the template (atlas) data is warped into alignment with. The
result is a set of warps, which can be applied to this image, or any other image that is in register
with it.

6.1.2 Estimation Options

Various settings for estimating deformations.

Bias regularisation

MR images are usually corrupted by a smooth, spatially varying artifact that modulates the
intensity of the image (bias). These artifacts, although not usually a problem for visual inspection,
can impede automated processing of the images.

An important issue relates to the distinction between intensity variations that arise because
of bias artifact due to the physics of MR scanning, and those that arise due to different tissue
properties. The objective is to model the latter by different tissue classes, while modelling the
former with a bias field. We know a priori that intensity variations due to MR physics tend
to be spatially smooth, whereas those due to different tissue types tend to contain more high
frequency information. A more accurate estimate of a bias field can be obtained by including prior
knowledge about the distribution of the fields likely to be encountered by the correction algorithm.
For example, if it is known that there is little or no intensity non-uniformity, then it would be
wise to penalise large values for the intensity non-uniformity parameters. This regularisation can
be placed within a Bayesian context, whereby the penalty incurred is the negative logarithm of a
prior probability for any particular pattern of non-uniformity.

Knowing what works best should be a matter of empirical exploration. For example, if your
data has very little intensity non-uniformity artifact, then the bias regularisation should be in-
creased. This effectively tells the algorithm that there is very little bias in your data, so it does
not try to model it.

Bias FWHM

FWHM of Gaussian smoothness of bias. If your intensity non-uniformity is very smooth, then
choose a large FWHM. This will prevent the algorithm from trying to model out intensity variation
due to different tissue types. The model for intensity non-uniformity is one of i.i.d. Gaussian
noise that has been smoothed by some amount, before taking the exponential. Note also that
smoother bias fields need fewer parameters to describe them. This means that the algorithm is
faster for smoother intensity non-uniformities.

Tissue probability map

Select the tissue probability atlas. These should contain probability maps of all the various tissues
found in the image data (such that probabilities are greater than or equal to zero, and they sum
to one at each voxel. A nonlinear deformation field is estimated that best overlays the atlas on
the individual subjects’ image.
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Affine Regularisation

The procedure is a local optimisation, so it needs reasonable initial starting estimates. Images
should be placed in approximate alignment using the Display function of SPM before beginning.
A Mutual Information affine registration with the tissue probability maps (D’Agostino et al,
2004) is used to achieve approximate alignment. Note that this step does not include any model
for intensity non-uniformity. This means that if the procedure is to be initialised with the affine
registration, then the data should not be too corrupted with this artifact.If there is a lot of
intensity non-uniformity, then manually position your image in order to achieve closer starting
estimates, and turn off the affine registration.

Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). For example, if registering to an image in ICBM/MNI
space, then choose this option. If registering to a template that is close in size, then select the
appropriate option for this.

Warping Regularisation

The objective function for registering the tissue probability maps to the image to process, in-
volves minimising the sum of two terms. One term gives a function of how probable the data
is given the warping parameters. The other is a function of how probable the parameters are,
and provides a penalty for unlikely deformations. Smoother deformations are deemed to be more
probable. The amount of regularisation determines the tradeoff between the terms. Pick a value
around one. However, if your normalised images appear distorted, then it may be an idea to
increase the amount of regularisation (by an order of magnitude). More regularisation gives
smoother deformations, where the smoothness measure is determined by the bending energy of
the deformations.

Smoothness

For PET or SPECT, set this value to about 5 mm, or more if the images have smoother noise.
For MRI, you can usually use a value of 0 mm. This is used to derive a fudge factor to account
for correlations between neighbouring voxels. Smoother data have more spatial correlations,
rendering the assumptions of the model inaccurate.

Sampling distance

This encodes the approximate distance between sampled points when estimating the model pa-
rameters. Smaller values use more of the data, but the procedure is slower and needs more
memory. Determining the “best” setting involves a compromise between speed and accuracy.

6.2 Normalise: Write

Allows previously estimated warps (stored in “y “imagename* sn.mat” files) to be applied to
series of images.

6.2.1 Data

List of subjects. Images of each subject should be warped differently.

Subject

Data for this subject. The same parameters are used within subject.
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Deformation Field Deformations can be thought of as vector fields, and represented by three-
volume images. In SPM, deformation fields are saved in NIfTT format, with dimensions xdim x
ydim x zdim x 1 x 3. Each voxel contains the x, y and z mm coordinates of where the deformation
points.

Images to Write These are the images for warping according to the estimated parameters.
They can be any images that are in register with the image used to generate the deformation.

6.2.2 Writing Options

Various options for writing normalised images.

Bounding box

The bounding box (in mm) of the volume which is to be written (relative to the anterior com-
missure).

Voxel sizes

The voxel sizes (x, y & z, in mm) of the written normalised images.

Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:

- Fastest, but not normally recommended.

Trilinear Interpolation:

- OK for PET, realigned fMRI, or segmentations

B-spline Interpolation:

- Better quality (but slower) interpolation [93], especially with higher degree splines. Can
produce values outside the original range (e.g. small negative values from an originally all positive
image).

Filename Prefix

Specify the string to be prepended to the filenames of the normalised image file(s). Default prefix
is 'w’.

6.3 Normalise: Estimate & Write

Computes the warp that best aligns the template (atlas) to the individual’s image, inverting it
and writing the result to the file ‘y ’imagename’.nii’. This option also allows the contents of the
‘y__’imagename’.nii’ files to be applied to a series of images.

Note that if you encounter problems with spatial normalisation, it is often advisable to use
the Check reg button to see how well aligned the original data are with the MNI-space templates
released with SPM. If mis-alignment is greater than about 3cm and 15 degrees, you could try to
manually re-position the images. This may be done using the Display button.

6.3.1 Data

List of subjects. Images of each subject should be warped differently.

Subject

Data for this subject. The same parameters are used within subject.
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Image to Align The image that the template (atlas) data is warped into alignment with. The
result is a set of warps, which can be applied to this image, or any other image that is in register
with it.

Images to Write These are the images for warping according to the estimated parameters.
They can be any images that are in register with the image used to generate the deformation.

6.3.2 Estimation Options

Various settings for estimating deformations.

Bias regularisation

MR images are usually corrupted by a smooth, spatially varying artifact that modulates the
intensity of the image (bias). These artifacts, although not usually a problem for visual inspection,
can impede automated processing of the images.

An important issue relates to the distinction between intensity variations that arise because
of bias artifact due to the physics of MR scanning, and those that arise due to different tissue
properties. The objective is to model the latter by different tissue classes, while modelling the
former with a bias field. We know a priori that intensity variations due to MR physics tend
to be spatially smooth, whereas those due to different tissue types tend to contain more high
frequency information. A more accurate estimate of a bias field can be obtained by including prior
knowledge about the distribution of the fields likely to be encountered by the correction algorithm.
For example, if it is known that there is little or no intensity non-uniformity, then it would be
wise to penalise large values for the intensity non-uniformity parameters. This regularisation can
be placed within a Bayesian context, whereby the penalty incurred is the negative logarithm of a
prior probability for any particular pattern of non-uniformity.

Knowing what works best should be a matter of empirical exploration. For example, if your
data has very little intensity non-uniformity artifact, then the bias regularisation should be in-
creased. This effectively tells the algorithm that there is very little bias in your data, so it does
not try to model it.

Bias FWHM

FWHM of Gaussian smoothness of bias. If your intensity non-uniformity is very smooth, then
choose a large FWHM. This will prevent the algorithm from trying to model out intensity variation
due to different tissue types. The model for intensity non-uniformity is one of i.i.d. Gaussian
noise that has been smoothed by some amount, before taking the exponential. Note also that
smoother bias fields need fewer parameters to describe them. This means that the algorithm is
faster for smoother intensity non-uniformities.

Tissue probability map

Select the tissue probability atlas. These should contain probability maps of all the various tissues
found in the image data (such that probabilities are greater than or equal to zero, and they sum
to one at each voxel. A nonlinear deformation field is estimated that best overlays the atlas on
the individual subjects’ image.

Affine Regularisation

The procedure is a local optimisation, so it needs reasonable initial starting estimates. Images
should be placed in approximate alignment using the Display function of SPM before beginning.
A Mutual Information affine registration with the tissue probability maps (D’Agostino et al,
2004) is used to achieve approximate alignment. Note that this step does not include any model
for intensity non-uniformity. This means that if the procedure is to be initialised with the affine
registration, then the data should not be too corrupted with this artifact.If there is a lot of
intensity non-uniformity, then manually position your image in order to achieve closer starting
estimates, and turn off the affine registration.
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Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). For example, if registering to an image in ICBM/MNI
space, then choose this option. If registering to a template that is close in size, then select the
appropriate option for this.

Warping Regularisation

The objective function for registering the tissue probability maps to the image to process, in-
volves minimising the sum of two terms. One term gives a function of how probable the data
is given the warping parameters. The other is a function of how probable the parameters are,
and provides a penalty for unlikely deformations. Smoother deformations are deemed to be more
probable. The amount of regularisation determines the tradeoff between the terms. Pick a value
around one. However, if your normalised images appear distorted, then it may be an idea to
increase the amount of regularisation (by an order of magnitude). More regularisation gives
smoother deformations, where the smoothness measure is determined by the bending energy of
the deformations.

Smoothness

For PET or SPECT, set this value to about 5 mm, or more if the images have smoother noise.
For MRI, you can usually use a value of 0 mm. This is used to derive a fudge factor to account
for correlations between neighbouring voxels. Smoother data have more spatial correlations,
rendering the assumptions of the model inaccurate.

Sampling distance

This encodes the approximate distance between sampled points when estimating the model pa-
rameters. Smaller values use more of the data, but the procedure is slower and needs more
memory. Determining the “best” setting involves a compromise between speed and accuracy.

6.3.3 Writing Options

Various options for writing normalised images.

Bounding box

The bounding box (in mm) of the volume which is to be written (relative to the anterior com-
missure).

Voxel sizes

The voxel sizes (x, y & z, in mm) of the written normalised images.

Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:

- Fastest, but not normally recommended.

Trilinear Interpolation:

- OK for PET, realigned fMRI, or segmentations

B-spline Interpolation:

- Better quality (but slower) interpolation [93], especially with higher degree splines. Can
produce values outside the original range (e.g. small negative values from an originally all positive
image).
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Filename Prefix

Specify the string to be prepended to the filenames of the normalised image file(s). Default prefix
is 'w’.
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This is for smoothing (or convolving) image volumes with a Gaussian kernel of a specified
width. It is used as a preprocessing step to suppress noise and effects due to residual differences

in functional and gyral anatomy during inter-subject averaging.

7.1

Specify the images to smooth. The smoothed images are written to the same subdirectories as
the original images and are prefixed with a ’s’. The prefix can be changed by an option setting.

Images to Smooth

7.2 FWHM

Specify the full-width at half maximum (FWHM) of the Gaussian smoothing kernel in mm. Three

values should be entered, denoting the FWHM in the x, y and z directions.

7.3 Data Type

Data-type of output images. SAME indicates the same datatype as the original images.

7.4 Implicit masking

An "implicit mask" is a mask implied by a particular voxel value (0 for images with integer type,

NaN for float images).

If set to "Yes’, the implicit masking of the input image is preserved in the smoothed image.

7.5 Filename Prefix

Specify the string to be prepended to the filenames of the smoothed image file(s). Default prefix

is ’s’.
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Chapter 8

fMRI model specification

Statistical analysis of fMRI data uses a mass-univariate approach based on General Linear Models
(GLMs). It comprises the following steps (1) specification of the GLM design matrix, fMRI data
files and filtering (2) estimation of GLM parameters using classical or Bayesian approaches and
(3) interrogation of results using contrast vectors to produce Statistical Parametric Maps (SPMs)
or Posterior Probability Maps (PPMs).

The design matrix defines the experimental design and the nature of hypothesis testing to be
implemented. The design matrix has one row for each scan and one column for each effect or
explanatory variable. (eg. regressor or stimulus function). You can build design matrices with
separable session-specific partitions. Each partition may be the same (in which case it is only
necessary to specify it once) or different.

Responses can be either event- or epoch related, the only distinction is the duration of the
underlying input or stimulus function. Mathematically they are both modeled by convolving a
series of delta (stick) or box functions (u), indicating the onset of an event or epoch with a set
of basis functions. These basis functions model the hemodynamic convolution, applied by the
brain, to the inputs. This convolution can be first-order or a generalized convolution modeled to
second order (if you specify the Volterra option). The same inputs are used by the Hemodynamic
model or Dynamic Causal Models which model the convolution explicitly in terms of hidden state
variables.

Event-related designs may be stochastic or deterministic. Stochastic designs involve one of a
number of trial-types occurring with a specified probability at successive intervals in time. These
probabilities can be fixed (stationary designs) or time-dependent (modulated or non-stationary
designs). The most efficient designs obtain when the probabilities of every trial type are equal.
A critical issue in stochastic designs is whether to include null events. If you wish to estimate the
evoked response to a specific event type (as opposed to differential responses) then a null event
must be included (even if it is not modeled explicitly).

In SPM, analysis of data from multiple subjects typically proceeds in two stages using models
at two “levels”. The “first level” models are used to implement a within-subject analysis. Typically
there will be as many first level models as there are subjects. Analysis proceeds as described
using the “Specify first level” and “Estimate” options. The results of these analyses can then
be presented as “case studies”. More often, however, one wishes to make inferences about the
population from which the subjects were drawn. This is an example of a “Random-Effects (RFX)
analysis” (or, more properly, a mixed-effects analysis). In SPM, RFX analysis is implemented
using the “summary-statistic” approach where contrast images from each subject are used as
summary measures of subject responses. These are then entered as data into a “second level”
model.

Figure 8.1 shows how the SPM graphics window appears during fMRI model specification.

8.1 Timing parameters

Specify various timing parameters needed to construct the design matrix. This includes the units
of the design specification and the interscan interval.
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Statistical analysis of fMRI data uses a mass-univariate approach based on General Linear Models (GLMSs). It comprises
the following steps (1) specification of the GLM design matrix, fMRI data files and filtering (2) estimation of GLM paramaters
using classical or Bayesian approaches and (3) interrogation of results using contrast vectors to produce Statistical
Parametric Maps (SPMs) or Posterior Probability Maps (PPMs).

Figure 8.1: After starting SPM in fMRI mode and pressing the “Specify 1st-level” button, the SPM
batch editor window should appear as above. The options for “fMRI model specification” can be
examined by clicking on them. A single click will bring up some help text in the lower subwindow
(not shown in the above graphic). Options highlighted with a “<-X” are mandatory and must be
filled in by the user. Each of the options shown above is described in this chapter.

Also, with long TRs you may want to shift the regressors so that they are aligned to a
particular slice. This is effected by changing the microtime resolution and onset.

8.1.1 Units for design

The onsets of events or blocks can be specified in either scans or seconds.

8.1.2 Interscan interval

Interscan interval, TR, (specified in seconds). This is the time between acquiring a plane of one
volume and the same plane in the next volume. It is assumed to be constant throughout.

8.1.3 Microtime resolution

In Echo-Planar Imaging (EPI), data is acquired a plane at a time. To acquire a whole volume of
data takes at least a second or two.

It is possible, however, that experimental events may occur between scan (volume) acquisition
times. This can be specified when building your design matrix either by (i) specifying your design
in scans and using non-integer values or (ii) specifying your design in seconds at a resolution
greater than the TR.

SPM takes these timing specifications and builds its regressors using a ‘microtime’ time-scale.
The microtime resolution, t, is the number of time-bins per scan.

Do not change this parameter unless you have a long TR and wish to shift regressors so that
they are aligned to a particular slice.

8.1.4 Microtime onset

The microtime onset, t0, is the first time-bin at which the regressors are resampled to coincide
with data acquisition. If t0 = 1 then the regressors will be appropriate for the first slice. If you
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Statistical analysis: Design
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parameter estimability

Design description...

Basis functions : hrf
Number of sessions : 2
Trials per session: 4 4
Interscan interval : 2.00 {s}
High pass Filter : [min] Cutoff: 128 {s}
Global calculation : mean voxel value
Grand mean scaling : session specific
Global normalisation : None

Figure 8.2: Design matriz for fMRI data from two sessions. There are 4 experimental conditions
and 6 regressors modelling the movement parameters for each session. The last two columns
model the average activity in each session, giving a total of 22 regressors. There are 351 fMRI
scans for each session. The overall design matrix therefore has 702 rows and 22 columns.

want to temporally realign the regressors so that they match responses in the middle slice then
make t0 = t/2 (assuming there is a negligible gap between volume acquisitions).

Do not change the default setting unless you have a long TR.

A typical use of the t and t0 parameters is to set them to correspond to the results of any slice
timing correction you have made eg. if you have 24 slices and have made slice 12 the reference
slice you would set t=24, t0=12.

8.2 Data & Design

The design matrix defines the experimental design and the nature of hypothesis testing to be
implemented. The design matrix has one row for each scan and one column for each effect or
explanatory variable. (e.g. regressor or stimulus function). Figure 8.2 shows an example of a
design matrix.

You can build design matrices with separable session-specific partitions. Each partition may
be the same (in which case it is only necessary to specify it once) or different. Responses can
be either event- or epoch related, where the latter model involves prolonged and possibly time-
varying responses to state-related changes in experimental conditions. Event-related response are
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modelled in terms of responses to instantaneous events. Mathematically they are both modelled
by convolving a series of delta (stick) or box-car functions, encoding the input or stimulus function.
with a set of hemodynamic basis functions.

8.2.1 Subject/Session

The design matrix for fMRI data consists of one or more separable, session-specific partitions.
These partitions are usually either one per subject, or one per fMRI scanning session for that
subject.

Scans

Select the fMRI scans for this session. They must all have the same image dimensions, orientation,
voxel size etc. This is implemented using SPM’s file selector.

Conditions

You are allowed to combine both event- and epoch-related responses in the same model and/or
regressor. Any number of condition (event or epoch) types can be specified. Epoch and event-
related responses are modeled in exactly the same way by specifying their onsets [in terms of onset
times| and their durations. Events are specified with a duration of 0. If you enter a single number
for the durations it will be assumed that all trials conform to this duration.For factorial designs,
one can later associate these experimental conditions with the appropriate levels of experimental
factors.

Condition An array of input functions is constructed, specifying occurrence events or epochs
(or both). These are convolved with a basis set at a later stage to give regressors that enter into
the design matrix. Interactions of evoked responses with some parameter (time or a specified
variate) enter at this stage as additional columns in the design matrix with each trial multiplied
by the [expansion of the| trial-specific parameter. The Oth order expansion is simply the main
effect in the first column.

Name Condition Name

Onsets Specify a vector of onset times for this condition type. This can be entered using the
keyboard eg. typing in “100 300” and then hitting return or “100;300” or “[100,300]” or “[100,300]".

More usually, however, this specification takes place using variables that have been created
before and loaded into matlab. For example, an my_onsets cell array’ might exist in a file
you created earlier called my_design.mat. You would then type load my_design at the matlab
command prompt before pressing the ‘Specify 1st-level” button.

You could then specify the onsets for condition 2 by typing in eg. my_onsets{2} instead of
entering the numbers via the keyboard.

Durations Specify the event durations. Epoch and event-related responses are modeled in
exactly the same way but by specifying their different durations. Events are specified with a
duration of 0. If you enter a single number for the durations it will be assumed that all trials
conform to this duration. If you have multiple different durations, then the number must match
the number of onset times.

Time Modulation This option allows for the characterisation of nonstationary responses.
Specifically, you can model either linear or nonlinear time effects. For example, 1st order modu-
lation would model the stick functions and a linear change of the stick function heights over time.
Higher order modulation will introduce further columns that contain the stick functions scaled
by time squared, time cubed etc.

LCell arrays are usually used in preference to matrices as different event types can then have different numbers
of events.
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Parametric Modulations The stick function itself can be modulated by some parametric
variate (this can be time or some trial-specific variate like reaction time) modeling the interaction
between the trial and the variate. The events can be modulated by zero or more parameters.

See [16, 14] for further details of parametric modulations.

Multiple conditions

If you have multiple conditions then entering the details a condition at a time is very inefficient.
This option can be used to load all the required information in one go.

You will need to create a *.mat file containing the relevant information. This *.mat file must
include the following cell arrays: names, onsets and durations eg. names{2}=’SSent-DSpeak’,
onsets{2}=[3 5 19 222], durations{2}=[0 O 0 0] contain the required details of the second
condition. These cell arrays may be made available by your stimulus delivery program eg. CO-
GENT. The duration vectors can contain a single entry if the durations are identical for all
events.

You then need to use SPM'’s file selector to select this *.mat file.

Regressors

Regressors are additional columns included in the design matrix, which may model effects that
would not be convolved with the haemodynamic response. One such example would be the
estimated movement parameters, which may confound the data.

Regressor
Name Enter name of regressor eg. First movement parameter

Value Enter the values that the regressor takes. This could also be, for example, the name
of a variable in MATLAB’s work space that you have previously loaded in from a file. This might
be a subjects movement parameters or reaction times.

Multiple regressors

If you have mutliple regressors eg. realignment parameters, then entering the details a regressor
at a time is very inefficient. This option can be used to load all the required information in one
go.

You will first need to create a *.mat file containing a matrix R. Each column of R will contain
a different regressor. When SPM creates the design matrix the regressors will be named R1, R2,
R3, ..etc.

You then need to use SPM’s file selector to select this *.mat file.

High-pass filter

The default high-pass filter cutoff is 128 seconds. Slow signal drifts with a period longer than
this will be removed. Use “Explore design” to ensure this cut-off is not removing too much
experimental variance. This is described later in section 8.10. High-pass filtering is implemented
using a residual forming matrix (i.e. it is not a convolution) and is simply a way to remove
confounds without estimating their parameters explicitly. The constant term is also incorporated
into this filter matrix.

8.3 Factorial design

If you have a factorial design then SPM can automatically generate the contrasts necessary to
test for the main effects and interactions.

This includes the F-contrasts necessary to test for these effects at the within-subject level (first
level) and the simple contrasts necessary to generate the contrast images for a between-subject
(second-level) analysis.
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To use this option, create as many factors as you need and provide a name and number of
levels for each. SPM assumes that the condition numbers of the first factor change slowest, the
second factor next slowest etc. It is best to write down the contingency table for your design to
ensure this condition is met. This table relates the levels of each factor to the conditions.

For example, if you have 2-by-3 design your contingency table has two rows and three columns
where the the first factor spans the rows, and the second factor the columns. The numbers of the
conditions are 1,2,3 for the first row and 4,5,6 for the second.

See [52] for more information on SPM and factorial designs.

8.3.1 Factor

Add a new factor to your experimental design.

Name

Name of factor, eg. 'Repetition’

Levels

Enter number of levels for this factor, eg. 2

8.4 Basis Functions

SPM uses basis functions to model the hemodynamic response. This could be a single basis
function or a set of functions. The most common choice is the ‘Canonical HRF’ with or without
time and dispersion derivatives.

8.4.1 Canonical HRF

Canonical Hemodynamic Response Function (HRF). This is the default option. Contrasts of
these effects have a physical interpretation and represent a parsimonious way of characterising
event-related responses. This option is also useful if you wish to look separately at activations and
deactivations. This is implemented using a t-contrast with a +1 or -1 entry over the canonical
regressor.

Model derivatives

Model HRF Derivatives. The canonical HRF combined with time and dispersion derivatives
comprise an ‘informed’ basis set, as the shape of the canonical response conforms to the hemo-
dynamic response that is commonly observed. The incorporation of the derivative terms allow
for variations in subject-to-subject and voxel-to-voxel responses. The time derivative allows the
peak response to vary by plus or minus a second and the dispersion derivative allows the width
of the response to vary by a similar amount.

A positive estimate of the time-derivative regression coefficient implies that the peak hemo-
dynamic response occurs earlier than usual ie. than would be expected using just the canonical
regressor. A positive estimate for the dispersion derivative implies a less dispersed response than
usual.

The informed basis set requires an SPMF for inference. T-contrasts over just the canonical are
perfectly valid but assume constant delay /dispersion. The informed basis set compares favourably
with eg. FIR bases on many data sets [51].

8.4.2 Other basis sets
The other basis sets supported by SPM are

1. Fourier Set

2. Fourier Set (Hanning)
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3. Gamma Functions

4. Finite Impulse Response (FIR)

For each of these options you must also specify the window length which is the length in
seconds of the post-stimulus time window that the basis functions span. You must also specify
the order, that is, how many basis functions to use.

Usually, an informed basis set should be sufficient for most data sets. If this does not provide
a good fit to the data it may be worthwhile re-considering how the neuronal events are modelled
ie. is the timing correct ? should events be split into subsets ?

Alternatively, the gamma basis functions are an interesting choice as a particular linear com-
bination of them is actually used to specify the canonical HRF. The FIR approach is of interest
as it is equivalent to the method of ‘selective averaging’. See [50] for further details.

8.5 Model Interactions (Volterra)

Generalized convolution of inputs, U, with basis set, bf.

For first order expansions the causes are simply convolved (e.g. stick functions) in U by the
basis functions in bf to create a design matrix X . For second order expansions new entries appear
that correspond to the interaction among the original causes. The basis functions for these effects
are two dimensional and are used to assemble the second order kernel.

Interactions or response modulations can enter at two levels. Firstly the stick function itself
can be modulated by some parametric variate. This can be time or some trial-specific variate like
reaction time modeling the interaction between the trial and the variate. Secondly interactions
among the trials themselves can be modeled using a Volterra series formulation that accommo-
dates interactions over time (and therefore within and between trial types).

This last option is useful for accommodating nonlinearities in the hemodynamic response. For
example, if two events occur within a second or so of each other then the hemodynamic response
to the pair may be less than the sum of the responses to each event when occuring in isolation.
This type of ‘sub-linear’ response can be modelled using Volterra kernels. See [38] for further
details.

8.6 Directory

Select a directory where the SPM.mat file containing the specified design matrix will be written. If
this directory already contains an SPM.mat file then SPM will warn you of this before overwriting
it, when the specification job is run.

8.7 Global normalisation

SPM can normalise fMRI data in one of two ways. These are selected using the options ‘None’
(the default) and ‘Scaling’.

Both methods are based on first estimating the average within-brain fMRI signal, g5, where
n denotes scan and s denotes session. If you select ‘Scaling’, SPM will multiply each fMRI value
in scan n and session s by 100/g,,s.

If you select “None” then SPM computes the grand mean value, g; = % where N is the
number of scans in that session. This is the fMRI signal averaged over all voxels within the brain
and all time points within session s. SPM then implements “Session-specific grand mean scaling”
by multiplying each fMRI data point in session s by 100/gs.

See [1] for further discussion of this issue.

8.8 Explicit mask

Specify an image for explicitly masking the analysis. A sensible option here is to use a segmen-
tation of structural images to specify a within-brain mask. If you select that image as an explicit
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mask then only those voxels in the brain will be analysed. This both speeds the estimation
and restricts SPMs/PPMs to within-brain voxels. Alternatively, if such structural images are
unavailable or no masking is required, then leave this field empty.

8.9 Serial correlations

Serial correlations in fMRI time series due to aliased biorhythms and unmodelled neuronal activity
can be accounted for using an autoregressive AR(1) model during Classical (ReML) parameter
estimation.

This estimate assumes the same correlation structure for each voxel, within each session.
ReML estimates are then used to correct for non-sphericity during inference by adjusting the
statistics and degrees of freedom appropriately. The discrepancy between estimated and actual
correlations are greatest at low frequencies. Therefore specification of the high-pass filter is
particularly important.

Serial correlation can be ignored if you choose the “none” option. Note that the above options
only apply if you later specify that your model will be estimated using the Classical (ReML) ap-
proach. If you choose Bayesian estimation these options will be ignored. For Bayesian estimation,
the choice of noise model (AR model order) is made under the estimation options. See [11, 83]
for further discussion of these issues.

8.10 Reviewing your design

After you have completed the SPM “job” file for specifying your fMRI design, and have run it,
you will then be able to review your design by pressing the “Review” button in SPM’s button
window (the top-left window). This is particularly useful, for example, for checking that your
experimental variance has not been removed by high-pass filtering, as shown in Figure 8.3.
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Figure 8.3: After pressing “Review”, selecting the pull-down ‘Design’ menu, Fxplore->Session, and
selecting the regressor you wish to look at, you should get a plot similar to the one above. The top
row shows time and frequency domain plots of the time-series corresponding to this regressor. In
this particular case we have four events. Fach event or “stick function” has been convolved with
the hemodynamic response function shown in the bottom panel. The frequency domain graph is
useful for checking that experimental variance is not removed by high-pass filtering. The grayed
out section of the frequency plot shows those frequencies which are removed. For this regressor
we have plenty of remaining experimental variance.
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Chapter 9

fMRI model estimation

Model parameters can be estimated using classical (ReML - Restricted Maximum Likelihood) or
Bayesian algorithms. After parameter estimation, the RESULTS button can be used to specify
contrasts that will produce Statistical Parametric Maps (SPMs), Effect Size Maps (ESMs) or
Posterior Probability Maps (PPMs) and tables of statistics.

9.1 Select SPM.mat

Select the SPM.mat file that contains the design specification. SPM will output the results of its
analysis into this directory. This includes overwriting the SPM.mat file. When the estimation job
is run, no warning will be given that the SPM.mat file will be overwritten. A warning is given at
the specification stage. When it comes to estimation, SPM assumes that you’ve now sorted out
your directory structures.

9.2 Method

There are three possible estimation procedures for fMRI models (1) classical (ReML) estimation
of first or second level models, (2) Bayesian estimation of first level models and (3) Bayesian
estimation of second level models. Option (2) uses a Variational Bayes (VB) algorithm introduced
in SPM5. Option (3) uses the Empirical Bayes algorithm with global shrinkage priors that was
also in SPM2.

To use option (3) you must have already estimated the model using option (1). That is, for
second-level models you must run a ReML estimation before running a Bayesian estimation. This
is not necessary for option (2). Bayesian estimation of 1st-level models using VB does not require
a prior ReML estimation.

9.2.1 Classical

Model parameters are estimated using Restricted Maximum Likelihood (ReML). This assumes
the error correlation structure is the same at each voxel. This correlation can be specified using
either an AR(1) or an Independent and Identically Distributed (IID) error model. These options
are chosen at the model specification stage. ReML estimation should be applied to spatially
smoothed functional images. See [41, 32] for further details of the ReML estimation scheme.
After estimation, specific profiles of parameters are tested using a linear compound or contrast
with the T or F statistic. The resulting statistical map constitutes an SPM. The SPMT/F is then
characterised in terms of focal or regional differences by assuming that (under the null hypothesis)
the components of the SPM (ie. residual fields) behave as smooth stationary Gaussian fields.

The rest of this chapter describes the Bayesian estimation options. So, please skip to the next
chapter if you are interested only in classical estimation and inference.
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Figure 9.1: After starting SPM in fMRI mode and pressing the “Estimate” button, the SPM batch
editor window should appear as above. The options for “fMRI model estimation” can be examined
by clicking on them. A single click will bring up some help text in the lower subwindow (not
shown in the above graphic). Options highlighted with a ‘<-X’ are mandatory and must be filled
in by the user. Each of the options shown above is described in this chapter.

9.2.2 Bayesian 1st-level

Model parameters are estimated using Variational Bayes (VB). This allows you to specify spatial
priors for regression coefficients and regularised voxel-wise AR(P) models for fMRI noise processes.
The algorithm does not require functional images to be spatially smoothed. Estimation will take
about 5 times longer than with the classical approach. This is why VB is not the default estimation
option. The VB approach has been described in a number of papers [33, 87, 80, 81].

After estimation, contrasts are used to find regions with effects larger than a user-specified
size eg. 1 per cent of the global mean signal. These effects are assessed statistically using a
Posterior Probability Map (PPM) [39].

Analysis Space

Because estimation can be time consuming options are provided to analyse selected slices or
clusters rather than the whole volume.

Volume A volume of data is analysed in “blocks”, which can be a slice or 3D subvolume, where
the extent of each subvolume is determined using a graph partitioning algorithm. Enter the block
type, i.e. “Slices” or “Subvolumes”.

Block type Enter the block type, i.e. “Slices” or “Subvolumes”.

Slices Enter Slice Numbers. This can be a single slice or multiple slices. If you select a single
slice or only a few slices you must be aware of the interpolation options when, after estimation,
displaying the estimated images eg. images of contrasts or AR maps. The default interpolation
option may need to be changed to nearest neighbour (NN) (see bottom right hand of graphics
window) for you slice maps to be visible.

Slice numbers Enter Slice Numbers.
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[ »

Model esfimation using this option is only efficient if MATLAB can load a whole slice of data info physical memory. With
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Figure 9.2: After choosing “Bayesian 1st-level” under “Method”, the SPM batch editor window

should appear as above. Fach of the options shown above is described in this chapter.

Block type Enter the block type, i.e. “Slices” or “Subvolume”.

Clusters Because estimation can be time consuming an option is provided to analyse selected

clusters rather than the whole volume.
Cluster mask Select cluster image.
Block type Enter the block type, i.e. “Slices” or “Subvolumes”.

Signal priors

e [UGL] Unweighted Graph Laplacian. This spatial prior is the recommended option.

Regression coefficients at a given voxel are (softly) constrained to be similar to those at
nearby voxels. The strength of this constraint is determined by a spatial precision parameter
that is estimated from the data. Different regression coefficients have different spatial
precisions allowing each putative experimental effect to have its own spatial regularity.

[GMRF| Gaussian Markov Random Field. This is equivalent to a normalized UGL.

[LORETA] Low resolution Tomography Prior. This is equivalent to UGL squared.
It is a standatd choice for EEG source localisation algorithms.

[WGL] Weighted Graph Laplacian. This is a generalization of the UGL, where weights
can be used to preserve “edges” of functional responses.

[Global] Global Shrinkage prior. This is not a spatial prior in the sense that regression
coefficients are constrained to be similar to neighboring voxels. Instead, the average effect
over all voxels (global effect) is assumed to be zero and all regression coefficients are shrunk
towards this value in proporation to the prior precision. This is the same prior that is used
for Bayesian estimation at the second level models, except that here the prior precision is
estimated separaetly for each slice.
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e [Uninformative] A flat prior. Essentially, no prior information is used. If you select
this option then VB reduces to Maximum Likelihood (ML)estimation. This option is useful
if, for example, you do not wish to use a spatial prior but wish to take advantage of the
voxel-wise AR(P) modelling of noise processes. In this case, you would apply the algorithm
to images that have been spatially smoothed. For P=0, ML estimation in turn reduces to
Ordinary Least Squares (OLS) estimates, and for P>0 ML estimation is equivalent to a
weighted least squares (WLS) but where the weights are different at each voxel (reflecting
the different noise correlation at each voxel).

AR model order

An AR model order of 3 is the default. Cardiac and respiratory artifacts are periodic in nature
and therefore require an AR order of at least 2. In previous work, voxel-wise selection of the
optimal model order showed that a value of 3 was the highest order required.

Higher model orders have little effect on the estimation time. If you select a model order of
zero this corresponds to the assumption that the errors are IID. This AR specification overrides
any choices that were made in the model specification stage.

Voxel-wise AR models are fitted separately for each session of data. For each session this
therefore produces maps of AR(1), AR(2) etc coefficients in the output directory.

Noise priors

There are five noise prior options here (1) UGL, (2) GMRF, (3) LORETA, (4) Tissue-type and
(5) Robust.

UGL [UGL] Unweighted graph-Laplacian. This is the default option. This spatial prior is the
same as that used for the regression coefficients. Spatial precisions are estimated separately for
each AR coefficient eg. the AR(1) coefficient over space, AR(2) over space etc.

GMRF [GMRF] Gaussian Markov Random Field. See comments on GMRF priors for regresion
coeflicients.

LORETA [LORETA] Low resolution Tomography Prior. See comments on LORETA priors
for regresion coefficients.

Tissue-type [Tissue-type] AR estimates at each voxel are biased towards typical values for
that tissue type (eg. gray, white, CSF). If you select this option you will need to then select files
that contain tissue type maps (see below). These are typically chosen to be Grey Matter, White
Matter and CSF images derived from segmentation of registered structural scans.

Previous work has shown that there is significant variation in AR values with tissue type.
However, GMRF priors have previously been favoured by Bayesian model comparison.

Robust Robust GLM. Uses Mixture of Gaussians noise model.

Log evidence map

Computes the log evidence for each voxel

ANOVA

Perform 1st or 2nd level Analysis of Variance.
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First level This is implemented using Bayesian model comparison. For example, to test for
the main effect of a factor two models are compared, one where the levels are represented using
different regressors and one using the same regressor. This therefore requires explicit fitting
of several models at each voxel and is computationally demanding (requiring several hours of
computation). The recommended option is therefore NO.

To use this option you must have already specified your factorial design during the model
specification stage.

Second level This option tells SPM to automatically generate the simple contrasts that are
necessary to produce the contrast images for a second-level (between-subject) ANOVA. Naturally,
these contrasts can also be used to characterise simple effects for each subject.

With the Bayesian estimation option it is recommended that contrasts are computed during
the parameter estimation stage (see ’simple contrasts’ below). The recommended option here is
therefore YES.

To use this option you must have already specified your factorial design during the model
specification stage.

If you wish to use these contrast images for a second-level analysis then you will need to
spatially smooth them to take into account between-subject differences in functional anatomy ie.
the fact that one persons V5 may be in a different position than anothers.

Simple contrasts

“Simple” contrasts refers to a contrast that spans one-dimension ie. to assess an effect that is
increasing or decreasing.

If you have a factoral design then the contrasts needed to generate the contrast images for a
2nd-level ANOVA (or to assess these simple effects within-subject) can be specified automatically
using the ANOVA->Second level option.

When using the Bayesian estimation option it is computationally more efficient to compute the
contrasts when the parameters are estimated. This is because estimated parameter vectors have
potentially different posterior covariance matrices at different voxels and these matrices are not
stored. If you compute contrasts post-hoc these matrices must be recomputed (an approximate
reconstruction based on a Taylor series expansion is used). It is therefore recommended to specify
as many contrasts as possible prior to parameter estimation.

If you wish to use these contrast images for a second-level analysis then you will need to
spatially smooth them to take into account between-subject differences in functional anatomy ie.
the fact that one persons V5 may be in a different position than anothers.

Simple contrast
Name Name of contrast eg. “Positive Effect”.

Contrast vector These contrasts are used to generate PPMs which characterise effect sizes
at each voxel. This is in contrast to SPMs in which eg. maps of t-statistics show the ratio of
the effect size to effect variability (standard deviation). SPMs are therefore a-dimensional. This
is not the case for PPMs as the size of the effect is of primary interest. Some care is therefore
needed about the scaling of contrast vectors. For example, if you are interested in the differential
effect size averaged over conditions then the contrast 0.5 0.5 -0.5 -0.5 would be more suitable than
the 1 1 -1 -1 contrast which looks at the differential effect size summed over conditions.

9.2.3 Bayesian 2nd-level

Bayesian estimation of 2nd level models. This option uses the Empirical Bayes algorithm with
global shrinkage priors that was previously implemented in SPM2. Use of the global shrinkage
prior embodies a prior belief that, on average over all voxels, there is no net experimental effect.
Some voxels will respond negatively and some positively with a variability determined by the
prior precision. This prior precision can be estimated from the data using Empirical Bayes.
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9.3 Output files

After estimation a number of files are written to the output directory. These are

e An SPM.mat file containing specification of the design and estimated model parameters

9.3.1 Classical 1st-level

For classical 1st-level models the following files are also produced

e Images of estimated regression coefficients beta_000k.img where k indexes the kth regres-
sion coefficient.

e An image of the variance of the error ResMS. img.
e An image mask.img indicating which voxels were included in the analysis.
e The image RPV.img, the estimated resels per voxel.

o If contrasts have been specified SPM also writes con_000i.img if the ith contrast is a
t-contrast and the extra sum of squares image ess_000i.img if it is an F-contrast.

Type help spm_spm at the matlab command prompt for further information.

9.3.2 Bayesian 1st-level

For Bayesian 1st-level models the following files are also produced

e Images of estimated regression coefficients Cbeta_000k. img where k indexes the kth regres-
sion coefficient. These filenames are prefixed with a “C” indicating that these are the mean
values of the ‘Conditional’ or ‘Posterior’ density.

e Images of error bars/standard deviations on the regression coefficients SDbeta_000k . img.
e An image of the standard deviation of the error Sess1_SDerror.img.
e An image mask.img indicating which voxels were included in the analysis.

o If a non-zero AR model order is specified then SPM also writes images Sess1_AR_000p. img
where p indexes the pth AR coefficient.

e If contrasts have been specified SPM also writes con_000i . img and con_sd_0001i . img which
are the mean and standard deviation of the ith pre-defined contrast.

Each of these images can be inspected using the “Display” button. Type help spm_spm_vb
at the MATLAB command prompt for further information.

9.4 Model comparison

Once you have estimated a model you can use SPM’s results button to look at the results. You
can also extract fMRI data from regions of interest using the ROI button. You can then compare
GLMs based on different hemodynamic basis sets using the Bayesian model evidence.

This is described in [31] and implemented using the command line option spm_vb_roi_basis.
This requires a VOI filename (created using the ROI button) and an SPM data structure. Type
help spm_vb_roi_basis at the MATLAB command prompt for further information. Figure 9.3
shows an example output from the function indicating that, for the data in this brain region, an
informed basis set has the highest model evidence.
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InH Inf-2 Inf-3 F FH Gainm3d FIR

Figure 9.3: This plot shows the model evidence for a number of different hemodynamic basis
sets: Infl - Canonical HRF, Inf2 - Canonical plus temporal derivative, Inf3 - Canonical plus
temporal and dispersion derivatives, F - Fourier, FH - Fourier with a Hanning Window, Gamm3
- 8 Gamma basis functions and FIR - a Finite Impulse Response function. An informed basis set
provides the best model of the data for the selected region.
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Chapter 10

Factorial design specification
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This interface configures the design matrix, describing the general linear model, data specifi-
cation, and other parameters necessary for the statistical analysis. These parameters are saved
in a configuration file (SPM.mat), which can then be passed on to spm_spm.m which estimates
the design. This is achieved by pressing the ’Estimate’ button. Inference on these estimated

parameters is then handled by the SPM results section.

This interface is used for setting up analyses of PET data, morphometric data, or ’second
level’ ('random effects’) fMRI data, where first level models can be used to produce appropriate
summary data that are then used as raw data for the second-level analysis. For example, a simple
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t-test on contrast images from the first-level turns out to be a random-effects analysis with random
subject effects, inferring for the population based on a particular sample of subjects.

A separate interface handles design configuration for first level fMRI time series.

Various data and parameters need to be supplied to specify the design (1) the image files, (2)
indicators of the corresponding condition/subject/group (2) any covariates, nuisance variables,
or design matrix partitions (3) the type of global normalisation (if any) (4) grand mean scaling
options (5) thresholds and masks defining the image volume to analyse. The interface supports
a comprehensive range of options for all these parameters.

10.1 Directory

Select a directory where the SPM.mat file containing the specified design matrix will be written.

10.2 Design

10.2.1 Omne-sample t-test

One-sample t-test.

Scans

Select the images. They must all have the same image dimensions, orientation, voxel size etc.

10.2.2 Two-sample t-test

Two-sample t-test.

Group 1 scans

Select the images from sample 1. They must all have the same image dimensions, orientation,
voxel size etc.

Group 2 scans

Select the images from sample 2. They must all have the same image dimensions, orientation,
voxel size etc.

Independence

By default, the measurements are assumed to be independent between levels.

If you change this option to allow for dependencies, this will violate the assumption of spheric-
ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm_ spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.

Variance

By default, the measurements in each level are assumed to have unequal variance.
This violates the assumption of ’sphericity’ and is therefore an example of 'non-sphericity’.
This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled
differently from another. Another example would be the comparison of qualitatively different
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dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm_ spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling

This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify 'grand mean scaling by factor’ which could be eg. ’grand mean
scaling by subject’ if the factor is subject’.

Since differences between subjects may be due to gain and sensitivity effects, AnCova by
subject could be combined with "grand mean scaling by subject" to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA

This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify "ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-
ject” or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

10.2.3 Paired t-test
Paired t-test.

Pairs

Pair Add a new pair of scans to your experimental design.
Scans [1,2] Select the pair of images.

Grand mean scaling

This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify ’grand mean scaling by factor’ which could be eg. ’grand mean
scaling by subject’ if the factor is ’subject’.

Since differences between subjects may be due to gain and sensitivity effects, AnCova by
subject could be combined with "grand mean scaling by subject" to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA

This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify "ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-
ject’ or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

10.2.4 Multiple regression

Multiple regression.

Scans

Select the images. They must all have the same image dimensions, orientation, voxel size etc.
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Covariates

Covariates

Covariate Add a new covariate to your experimental design.
Vector Vector of covariate values.
Name Name of covariate.

Centering Centering refers to subtracting the mean (central) value from the covariate val-
ues, which is equivalent to orthogonalising the covariate with respect to the constant column.

Subtracting a constant from a covariate changes the beta for the constant term, but not that
for the covariate. In the simplest case, centering a covariate in a simple regression leaves the slope
unchanged, but converts the intercept from being the modelled value when the covariate was zero,
to being the modelled value at the mean of the covariate, which is often more easily interpretable.
For example, the modelled value at the subjects’ mean age is usually more meaningful than the
(extrapolated) value at an age of zero.

If a covariate value of zero is interpretable and/or you wish to preserve the values of the
covariate then choose 'No centering’. You should also choose not to center if you have already
subtracted some suitable value from your covariate, such as a commonly used reference level or
the mean from another (e.g. larger) sample.

Intercept

By default, an intercept is always added to the model. If the covariates supplied by the user
include a constant effect, the intercept may be omitted.

10.2.5 One-way ANOVA
One-way Analysis of Variance (ANOVA).

Cells

Enter the scans a cell at a time.
Cell Enter data for a cell in your design.

Scans Select the images for this cell. They must all have the same image dimensions,
orientation, voxel size etc.

Independence

By default, the measurements are assumed to be independent between levels.

If you change this option to allow for dependencies, this will violate the assumption of spheric-
ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.
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Variance

By default, the measurements in each level are assumed to have unequal variance.

This violates the assumption of ’sphericity’ and is therefore an example of 'non-sphericity’.

This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled
differently from another. Another example would be the comparison of qualitatively different
dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm_ spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling

This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify ’grand mean scaling by factor’ which could be eg. ’grand mean
scaling by subject’ if the factor is ’subject’.

Since differences between subjects may be due to gain and sensitivity effects, AnCova by
subject could be combined with "grand mean scaling by subject" to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA

This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify "ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-
ject’ or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

10.2.6 One-way ANOVA - within subject
One-way Analysis of Variance (ANOVA) - within subject.

Subjects

Subject Enter data and conditions for a new subject.

Scans Select the images to be analysed. They must all have the same image dimensions,
orientation, voxel size etc.

Conditions

Independence

By default, the measurements are assumed to be dependent between levels.

If you change this option to allow for dependencies, this will violate the assumption of spheric-
ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.
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Variance

By default, the measurements in each level are assumed to have unequal variance.

This violates the assumption of ’sphericity’ and is therefore an example of 'non-sphericity’.

This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled
differently from another. Another example would be the comparison of qualitatively different
dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_ spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm_ spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling

This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify 'grand mean scaling by factor’ which could be eg. ’grand mean
scaling by subject’ if the factor is ’subject’.

Since differences between subjects may be due to gain and sensitivity effects, AnCova by
subject could be combined with "grand mean scaling by subject" to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA

This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify ’ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-
ject’ or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

10.2.7 Full factorial

This option is best used when you wish to test for all main effects and interactions in one-way,
two-way or three-way ANOVAs. Design specification proceeds in 2 stages. Firstly, by creating
new factors and specifying the number of levels and name for each. Nonsphericity, ANOVA-
by-factor and scaling options can also be specified at this stage. Secondly, scans are assigned
separately to each cell. This accomodates unbalanced designs.

For example, if you wish to test for a main effect in the population from which your subjects are
drawn and have modelled that effect at the first level using K basis functions (eg. K=3 informed
basis functions) you can use a one-way ANOVA with K-levels. Create a single factor with K levels
and then assign the data to each cell eg. canonical, temporal derivative and dispersion derivative
cells, where each cell is assigned scans from multiple subjects.

SPM will also automatically generate the contrasts necessary to test for all main effects and
interactions.

Factors

Specify your design a factor at a time.
Factor Add a new factor to your experimental design.
Name Name of factor, eg. 'Repetition’.

Levels Enter number of levels for this factor, eg. 2.
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Independence By default, the measurements are assumed to be independent between lev-
els.

If you change this option to allow for dependencies, this will violate the assumption of spheric-
ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.

Variance By default, the measurements in each level are assumed to have unequal variance.

This violates the assumption of ’sphericity’ and is therefore an example of 'non-sphericity’.

This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled
differently from another. Another example would be the comparison of qualitatively different
dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm_ spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify ’grand mean scaling by factor’ which could be eg. ’grand mean
scaling by subject’ if the factor is ’subject’.

Since differences between subjects may be due to gain and sensitivity effects, AnCova by
subject could be combined with "grand mean scaling by subject" to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify "ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-
ject” or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

Cells

Enter the scans a cell at a time.
Cell Enter data for a cell in your design.

Levels Enter a vector or scalar that specifies which cell in the factorial design these images
belong to. The length of this vector should correspond to the number of factors in the design

For example, length 2 vectors should be used for two-factor designs eg. the vector [2 3] specifies
the cell corresponding to the 2nd-level of the first factor and the 3rd level of the 2nd factor.

Scans Select the images for this cell. They must all have the same image dimensions,
orientation, voxel size etc.

Generate contrasts

Automatically generate the contrasts necessary to test for all main effects and interactions.
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10.2.8 Flexible factorial

Create a design matrix a block at a time by specifying which main effects and interactions you
wish to be included.

This option is best used for one-way, two-way or three-way ANOVAs but where you do not
wish to test for all possible main effects and interactions. This is perhaps most useful for PET
where there is usually not enough data to test for all possible effects. Or for 3-way ANOVAs
where you do not wish to test for all of the two-way interactions. A typical example here would
be a group-by-drug-by-task analysis where, perhaps, only (i) group-by-drug or (ii) group-by-task
interactions are of interest. In this case it is only necessary to have two-blocks in the design matrix
- one for each interaction. The three-way interaction can then be tested for using a contrast that
computes the difference between (i) and (ii).

Design specification then proceeds in 3 stages. Firstly, factors are created and names specified
for each. Nonsphericity, ANOVA-by-factor and scaling options can also be specified at this stage.

Secondly, a list of scans is produced along with a factor matrix, I. This is an nscan x 4 matrix
of factor level indicators (see xX.I below). The first factor must be ’replication’ but the other
factors can be anything. Specification of I and the scan list can be achieved in one of two ways
(a) the ’Specify All’ option allows I to be typed in at the user interface or (more likely) loaded
in from the matlab workspace. All of the scans are then selected in one go. (b) the ’Subjects’
option allows you to enter scans a subject at a time. The corresponding experimental conditions
(ie. levels of factors) are entered at the same time. SPM will then create the factor matrix I.
This style of interface is similar to that available in SPM2.

Thirdly, the design matrix is built up a block at a time. Each block can be a main effect or a
(two-way) interaction.

Factors

Specify your design a factor at a time.

Factor Add a new factor to your design.

If you are using the "Subjects’ option to specify your scans and conditions, you may wish to
make use of the following facility. There are two reserved words for the names of factors. These
are ’subject’ and 'repl’ (standing for replication). If you use these factor names then SPM will
automatically create replication and/or subject factors without you having to type in an extra
entry in the condition vector.

For example, if you wish to model Subject and Task effects (two factors), under Subjects-
>Subject->Conditions you should simply type in eg. [1 2 1 2] to specify just the *Task’ factor
level, instead of, eg. for the 4th subject the matrix [4 1;4 2:4 1;4 2].

Name Name of factor, eg. 'Repetition’.

Independence By default, the measurements are assumed to be independent between lev-
els.

If you change this option to allow for dependencies, this will violate the assumption of spheric-
ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.

Variance By default, the measurements in each level are assumed to have unequal variance.
This violates the assumption of ’sphericity’ and is therefore an example of 'non-sphericity’.
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This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled
differently from another. Another example would be the comparison of qualitatively different
dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be es-
timated using ReML in spm_spm (assuming the same for all responsive voxels) and used to
adjust the statistics and degrees of freedom during inference. By default spm_spm will use
weighted least squares to produce Gauss-Markov or Maximum likelihood estimators using the
non-sphericity structure specified at this stage. The components will be found in SPM.xVi and
enter the estimation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling This option is for PET or VBM data (not second level fMRI).

Selecting YES will specify 'grand mean scaling by factor’ which could be eg. ’grand mean
scaling by subject’ if the factor is ’subject’.

Since differences between subjects may be due to gain and sensitivity effects, AnCova by
subject could be combined with "grand mean scaling by subject" to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA This option is for PET or VBM data (not second level {MRI).

Selecting YES will specify "ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-
ject” or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

Specify Subjects or all Scans & Factors
Subjects

Subject Enter data and conditions for a new subject.

Scans Select the images to be analysed. They must all have the same image dimensions,
orientation, voxel size etc.

Conditions

Specify all Specify (i) all scans in one go and (ii) all conditions using a factor matrix, I. This
option is for 'power users’. The matrix I must have four columns and as as many rows as scans.
It has the same format as SPM’s internal variable SPM.xX.I.

The first column of I denotes the replication number and entries in the other columns denote
the levels of each experimental factor.

So, for eg. a two-factor design the first column denotes the replication number and columns
two and three have entries like 2 3 denoting the 2nd level of the first factor and 3rd level of the
second factor. The 4th column in I would contain all 1s.

Scans Select the images to be analysed. They must all have the same image dimensions,
orientation, voxel size etc.

Factor matrix Specify factor/level matrix as a nscan-by-4 matrix. Note that the first
column of I is reserved for the internal replication factor and must not be used for experimental
factors.

Main effects & Interactions

Main effect Add a main effect to your design matrix.
Factor number Enter the number of the factor.

Interaction Add an interaction to your design matrix.
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Factor numbers Enter the numbers of the factors of this (two-way) interaction.

10.3 Covariates

This option allows for the specification of covariates and nuisance variables (note that SPM does
not make any distinction between effects of interest (including covariates) and nuisance effects).

10.3.1 Covariate

Add a new covariate to your experimental design.

Vector

Vector of covariate values.

Enter the covariate values "per subject” (i.e. all for subject 1, then all for subject 2, etc).
Importantly, the ordering of the cells of a factorial design has to be the same for all subjects in
order to be consistent with the ordering of the covariate values.

Name

Name of covariate.

Interactions

For each covariate you have defined, there is an opportunity to create an additional regressor that
is the interaction between the covariate and a chosen experimental factor.

Centering

Centering, in the simplest case, refers to subtracting the mean (central) value from the covariate
values, which is equivalent to orthogonalising the covariate with respect to the constant column.

Subtracting a constant from a covariate changes the beta for the constant term, but not that
for the covariate. In the simplest case, centering a covariate in a simple regression leaves the slope
unchanged, but converts the intercept from being the modelled value when the covariate was zero,
to being the modelled value at the mean of the covariate, which is often more easily interpretable.
For example, the modelled value at the subjects’ mean age is usually more meaningful than the
(extrapolated) value at an age of zero.

If a covariate value of zero is interpretable and/or you wish to preserve the values of the
covariate then choose 'No centering’. You should also choose not to center if you have already
subtracted some suitable value from your covariate, such as a commonly used reference level or
the mean from another (e.g. larger) sample. Note that "User specified value’ has no effect, but is
present for compatibility with earlier SPM versions.

Other centering options should only be used in special cases. More complicated centering
options can orthogonalise a covariate or a covariate-factor interaction with respect to a factor,
in which case covariate values within a particular level of a factor have their mean over that
level subtracted. As in the simple case, such orthogonalisation changes the betas for the factor
used to orthogonalise, not those for the covariate/interaction being orthogonalised. This there-
fore allows an added covariate/interaction to explain some otherwise unexplained variance, but
without altering the group difference from that without the covariate/interaction. This is usually
*inappropriate* except in special cases. One such case is with two groups and covariate that only
has meaningful values for one group (such as a disease severity score that has no meaning for a
control group); centering the covariate by the group factor centers the values for the meaningful
group and (appropriately) zeroes the values for the other group.

10.4 Multiple covariates

This option allows for the specification of multiple covariates from TXT/MAT files.
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10.4.1 Covariates

Add a new set of covariates to your experimental design.

File(s)

Select the *.mat/*.txt file(s) containing details of your multiple covariates.

You will first need to create a *.mat file containing a matrix R or a *.txt file containing the
covariates. Each column of R will contain a different covariate. Unless the covariates names are
given in a cell array called 'names’ in the MAT-file containing variable R, the covariates will be
named R1, R2, R3, ..etc.

Interactions

For each covariate you have defined, there is an opportunity to create an additional regressor that
is the interaction between the covariate and a chosen experimental factor.

Centering

Centering, in the simplest case, refers to subtracting the mean (central) value from the covariate
values, which is equivalent to orthogonalising the covariate with respect to the constant column.

Subtracting a constant from a covariate changes the beta for the constant term, but not that
for the covariate. In the simplest case, centering a covariate in a simple regression leaves the slope
unchanged, but converts the intercept from being the modelled value when the covariate was zero,
to being the modelled value at the mean of the covariate, which is often more easily interpretable.
For example, the modelled value at the subjects’ mean age is usually more meaningful than the
(extrapolated) value at an age of zero.

If a covariate value of zero is interpretable and/or you wish to preserve the values of the
covariate then choose 'No centering’. You should also choose not to center if you have already
subtracted some suitable value from your covariate, such as a commonly used reference level or
the mean from another (e.g. larger) sample. Note that "User specified value’ has no effect, but is
present for compatibility with earlier SPM versions.

Other centering options should only be used in special cases. More complicated centering
options can orthogonalise a covariate or a covariate-factor interaction with respect to a factor,
in which case covariate values within a particular level of a factor have their mean over that
level subtracted. As in the simple case, such orthogonalisation changes the betas for the factor
used to orthogonalise, not those for the covariate/interaction being orthogonalised. This there-
fore allows an added covariate/interaction to explain some otherwise unexplained variance, but
without altering the group difference from that without the covariate/interaction. This is usually
*inappropriate* except in special cases. One such case is with two groups and covariate that only
has meaningful values for one group (such as a disease severity score that has no meaning for a
control group); centering the covariate by the group factor centers the values for the meaningful
group and (appropriately) zeroes the values for the other group.

10.5 Masking

The mask specifies the voxels within the image volume which are to be assessed. SPM supports
three methods of masking (1) Threshold, (2) Implicit and (3) Explicit. The volume analysed is
the intersection of all masks.

10.5.1 Threshold masking

Images are thresholded at a given value and only voxels at which all images exceed the threshold
are included.

None

No threshold masking
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Absolute

Images are thresholded at a given value and only voxels at which all images exceed the threshold
are included.
This option allows you to specify the absolute value of the threshold.

Threshold Enter the absolute value of the threshold.

Relative

Images are thresholded at a given value and only voxels at which all images exceed the threshold
are included.
This option allows you to specify the value of the threshold as a proportion of the global value.

Threshold Enter the threshold as a proportion of the global value.

10.5.2 Implicit Mask

An "implicit mask" is a mask implied by a particular voxel value. Voxels with this mask value
are excluded from the analysis.

For image data-types with a representation of NaN (see spm_type.m), NaN’s is the implicit
mask value, (and NaN’s are always masked out).

For image data-types without a representation of NaN, zero is the mask value, and the user
can choose whether zero voxels should be masked out or not.

By default, an implicit mask is used.

10.5.3 Explicit Mask

Explicit masks are other images containing (implicit) masks that are to be applied to the current
analysis.

All voxels with value NaN (for image data-types with a representation of NaN), or zero (for
other data types) are excluded from the analysis.

Explicit mask images can have any orientation and voxel/image size. Nearest neighbour
interpolation of a mask image is used if the voxel centers of the input images do not coincide with
that of the mask image.

10.6 Global calculation

This option is for PET or VBM data (not second level fMRI).

There are three methods for estimating global effects (1) Omit (assumming no other options
requiring the global value chosen) (2) User defined (enter your own vector of global values) (3)
Mean: SPM standard mean voxel value (within per image fullmean/8 mask)

10.6.1 Omit

Omit

10.6.2 User

User defined global effects (enter your own vector of global values).

Global values

Enter the vector of global values.
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10.6.3 Mean

SPM standard mean voxel value.

This defines the global mean via a two-step process. Firstly, the overall mean is computed.
Voxels with values less than 1/8 of this value are then deemed extra-cranial and get masked out.
The mean is then recomputed on the remaining voxels.

10.7 Global normalisation

These options are for PET or VBM data (not second level fMRI).

"Overall grand mean scaling’ simply scales all the data by a common factor such that the
mean of all the global values is the value specified.

"Normalisation’ refers to either proportionally scaling each image or adding a covariate to
adjust for the global values.

10.7.1 Overall grand mean scaling

Scaling of the overall grand mean simply scales all the data by a common factor such that the
mean of all the global values is the value specified. For qualitative data, this puts the data into
an intuitively accessible scale without altering the statistics.

When proportional scaling global normalisation is used each image is separately scaled such
that it’s global value is that specified (in which case the grand mean is also implicitly scaled to
that value). So, to proportionally scale each image so that its global value is eg. 20, select <Yes>
then type in 20 for the grand mean scaled value.

When using AnCova or no global normalisation, with data from different subjects or sessions,
an intermediate situation may be appropriate, and you may be given the option to scale group,
session or subject grand means separately.

No

No overall grand mean scaling.

Yes

Scaling of the overall grand mean simply scales all the data by a common factor such that the
mean of all the global values is the value specified. For qualitative data, this puts the data into
an intuitively accessible scale without altering the statistics.

Grand mean scaled value The default value of 50, scales the global flow to a physiologically
realistic value of 50ml/dl/min.

10.7.2 Normalisation

This option is for PET or VBM data (not second level fMRI).

Global nuisance effects (such as average values for PET images, or total tissue volumes for
VBM) can be accounted for either by dividing the intensities in each image by the image’s global
value (proportional scaling), or by including the global covariate as a nuisance effect in the general
linear model (AnCova).

Much has been written on which to use, and when. Basically, since proportional scaling
also scales the variance term, it is appropriate for situations where the global measurement
predominantly reflects gain or sensitivity. Where variance is constant across the range of global
values, linear modelling in an AnCova approach has more flexibility, since the model is not
restricted to a simple proportional regression.

"Ancova by subject’ or ’Ancova by effect’ options are implemented using the ANCOVA options
provided where each experimental factor (eg. subject or effect), is defined. These allow eg.
different subjects to have different relationships between local and global measurements.
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Since differences between subjects may be due to gain and sensitivity effects, AnCova by sub-
ject could be combined with "grand mean scaling by subject" (an option also provided where each
experimental factor is originally defined) to obtain a combination of between subject proportional
scaling and within subject AnCova.
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EEG/MEG
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Chapter 11

SPM for MEG/EEG overview

11.1 Welcome to SPM for M/EEG

SPM functionality for M/EEG data analysis consists of three major parts.

e Statistical analysis of voxel-based images. For statistical analysis, we use exactly the same
routines as SPM for fMRI users would. These are robust and validated functions based
on the General Linear Model' (GLM) and Random Field Theory? (RFT). The statistical
methods are equally applicable to multi- (or single-) subject M/EEG studies.

e Source Reconstruction ® . Our group has invested heavily in establishing Bayesian ap-
proaches to the source reconstruction of M/EEG data. Good source reconstruction tech-
niques are vital for the M/EEG field, otherwise it would be very difficult to relate sensor
data to neuroanatomy or findings from other modalities like fMRI. Bayesian source re-
construction provides a principled way of incorporating prior beliefs about how the data
were generated, and enables principled methods for model comparison. With the use of
priors and Bayesian model comparison, M/EEG source reconstruction is a very powerful
neuroimaging tool, which has a unique macroscopic view on neuronal dynamics.

e Dynamic Causal Modelling* (DCM), which is a spatio-temporal network model to estimate
effective connectivity in a network of sources. For M/EEG, DCM is a powerful technique,
because the data are highly resolved in time and this makes the identifiability of neuro-
biologically inspired network models feasible. This means that DCM can make inferences
about temporal precedence of sources and can quantify changes in feedforward, backward
and lateral connectivity among sources on a neuronal time-scale of milliseonds.

In order to make it possible for the users to prepare their data for SPM analyses we also
implemented a range of tools for the full analysis pipeline starting with raw data from the MEG
or EEG machine.

Our overall goal is to provide an academic M/EEG analysis software package that can be used by
everyone to apply the most recent methods available for the analysis of M/EEG data. Although
SPM development is focusing on a set of specific methods pioneered by our group, we aim at
making it straightforward for the users to combine data processing in SPM and other software
packages. We have a formal collaboration with the excellent FieldTrip package (head developer:
Robert Oostenveld, F.C. Donders centre in Nijmegen/Netherlands)® on many analysis issues. For
example, SPM and FieldTrip share routines for converting data to MATLAB, forward modelling for
M/EEG source reconstruction and the SPM distribution contains a version of FieldTrip so that
one can combine FieldTrip and SPM functions in custom scripts. SPM and FieldTrip complement
each other well, as SPM is geared toward specific analysis tools, whereas FieldTrip is a more

LGLM: http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/GLM. html

2RFT: http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/RFT.html

3Source Reconstruction: http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/EEG.html
4Dynamic Causal Modelling: http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/DCM.html
5FieldTrip: http://fieldtrip.fcdonders.nl/
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general repository of different methods that can be put together in flexible ways to perform a
variety of analyses. This flexibility of FieldTrip, however, comes at the expense of accessibility
to a non-expert user. FieldTrip does not have a graphical user interface (GUI) and its functions
are used by writing custom MATLAB scripts. By combining SPM and FieldTrip the flexibility of
FieldTrip can be complemented by SPM’s GUI tools and batching system. Within this framework,
power users can easily and rapidly develop specialized analysis tools with GUIs that can then
also be used by non-proficient MATLAB users. Some examples of such tools are available in the
MEEG toolbox distributed with SPM. We will also be happy to include in this toolbox new tools
contributed by other users as long as they are of general interest and applicability.

11.2 Changes from SPMS8 to SPM12

SPMB8 introduced major changes to the initial implementation of M/EEG analyses in SPM5. The
main change was a different data format that used an object to ensure internal consistency and
integrity of the data structures and provide a consistent interface to the functions using M/EEG
data. The use of the object substantially improved the stability and robustness of SPM code. The
changes in data format and object details from SPMS8 to SPM12 are relatively minor. The aims
of those changes were to rationalise the internal data structures and object methods to remove
some ’historical’ design mistakes and inconsistencies. For instance, the methods meegchannels,
eogchannels, ecgchannels from SPMS8 have been replaced with method indchantype that accepts
as an argument the desired channel type and returns channel indices. indchantype is one of
several methods with similar functionality, the others being indsample, indchannel, indtrial (that
replaces pickconditions) and indfrequency.

Another major change in data preprocessing functionality was removal of interactive GUI elements
and switch to the use of SPM batch system. This should make it easy to build processing pipelines
for performing complete complicated data analyses without programming. The use of batch
has many advantages but can also complicate some of the operations because a batch must be
configured in advance and cannot rely on information available in the input file. For instance,
the batch tool cannot know the channel names for a particular dataset and thus cannot generate
a dialog box for the user to choose the channels. To facilitate the processing steps requiring
this kind of information additional functionalities have been added to the 'Prepare’ tool under
‘Batch inputs’ menu. One can now make the necessary choices for a particular dataset using an
unteractive GUI and then save the results in a mat file and use this file as an input to batch.
The following chapters go through all the EEG/MEG related functionality of SPM. Most users
will probably find the tutorial (chapter 40) useful for a quick start. A further detailed description
of the conversion, preprocessing functions, and the display is given in chapter 12. In chapter 13,
we explain how one would use SPM’s statistical machinery to analyse M/EEG data. The 3D-
source reconstruction routines, including dipole modelling, are described in chapter 14. Finally,
in chapter 16, we describe the graphical user interface for dynamical causal modelling, for evoked
responses, induced responses, and local field potentials.



Chapter 12

EEG/MEG preprocessing —
Reference

In this chapter we will describe the function and syntax of all SPM/MEEG preprocessing and
display functions. This will be the most detailed description of the functions in this manual. Our
goal is to provide a comprehensive description of how the software can be used to preprocess
M/EEG data up to the point where one would use one of the source reconstruction techniques
or statistical analysis of M/EEG channel data.

These functions can be called either from the MATLAB command line and scripts, or via the
batch input system. The batch input system is designed for repetitive analyses of data (eg. from
multiple subjects) . Once the user becomes familiar with the batch tools necessary for their
analysis it is very easy to chain them using batch dependencies and run them as one pipeline.
The principles of using the batch tool are described in 47. The command line facilities are
very useful for writing scripts, or using SPM’s history-to-script functionality to generate scripts
automatically.

For scripts we follow the concept of providing only one input argument to each function. This
input argument is usually a structure (struct) that contains all input arguments as fields. This
approach has the advantage that the input does not need to follow a specific input argument
order. For some arguments default values can be provided. When an obligatory argument is
misisng, this will cause an error.

Below we will describe the parameters available in the batch tool and the names of the cor-
responding low-level SPM functions. The interface for calling these functions from a script is
described in function headers.

We will go through the conversion of the data, specifics of the M/EEG format in SPM, how
to properly enter additional information about the channels, how to call Field Trip-functions from
SPM, a complete reference of all methods and functions, how to use the display, and finally how
to script and batch the preprocessing.

12.1 Conversion of data

The first step of any analysis is the conversion of data from its native machine-dependent format
to a MATLABbased, common SPM format. This format stores the data in a *.dat file and all
other information in a *.mat file. The *.mat file contains the data structure D and the *.dat
is the M/EEG data. The conversion facility of SPM is based on the “fileio” toolbox', which is
shared between SPM, FieldTrip and EEGLAB toolboxes and jointly developed by the users of
these toolboxes. At the moment most common EEG and MEG data formats are supported. For
some cases, it might be necessary to install additional MATLAB toolboxes. In this case an error
message will be displayed with a link where the appropriate toolbox can be downloaded. If your
data format is not recognized by “fileio”, you can extend the “fileio” toolbox and contribute your

Lfileio: http://fieldtrip.fcdonders.nl/development/fileio
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code to us. See “fileio” page for details.

After selecting on the CONVERT from the CONVERT dropdown menu of the M/EEG GUI you
will be asked (“Define settings?”) to choose whether to define some settings for the conversion or
“just read”. The latter option was introduced to enable a simple and convenient conversion of the
data with no questions asked. The resulting SPM M/EEG data file can then be explored with
SPM’s reviewing tool to determine the appropriate conversion parameters for the future. If the
“just read” option is chosen, SPM will try to convert the whole dataset preserving as much data
as possible. The other option - “yes” - opens the batch tool for conversion

In either case you will need to select the file to be converted. As a rule of thumb, if the
dataset consists of several files, the file containing the data (which is usually the largest) should
be selected. SPM can usually automatically recognize the data format and apply the appropriate
conversion routine. However, in some cases there is not enough information in the data file for
SPM to recognize the format. This will typically be the case for files with non-specific extensions
(*.dat, *.bin, *.eeg, etc). In these cases the header-, and not the data-, file should be chosen
for conversion and if it is recognized, SPM will locate the data file automatically. In some rare
cases automatic recognition is not possible or there are several possible low-level readers available
for the same format. For these cases there is an option to force SPM to use a particular low-level
reader available with the batch tool or in a script (see below).

The other options in the conversion batch are as follows:

e Reading mode - a file can be read either as continuous or epoched. In the continuous case
either the whole file or a contiguous time window can be read. In the epoched case trials
should be defined (see "Epoching’ below). The advantage of defining trials at conversion
is that only the necessary subset of the raw data is converted. This is useful when the
trials of interest are only a small subset of the whole recording (e.g. some events recorded
during sleep). Note that some datasets do not contain continuous data to begin with. These
datasets should usually be converted with the “Epoched” option. There is also a possibility
to only convert the header without the data. This can be useful if the information of interest
is in the header (e.g. sensor locations).

e Channel selection - a subset of channels can be selected. There are several options for
defining this subset that can be combined: by channel type, by names or using a .mat file
containing a list of channel labels. Note that channel selection branch is available in many
batch tools and its functionality is the same everywhere.

e Output filename - the name for the output dataset. Note that here any name can be given
whereas in other preprocessing tools the user can only define a prefix to be appended to
the existing name (this limitation can be circumvented using the 'Copy’ tool). By default
SPM will append ’spmeeg_ prefix to the raw data file name.

e Event padding - usually when epoching at conversion only events occuring within trials
are included with the trials. This option makes it possible to also include events occurring
earlier and later within the specified time window.

e Block size - this is size of blocks used internally to read large files. Does not usually need
to be modified unless you have an old system with memory limitations.

e Check trial boundaries - SPM will not usually read data as continuous if it is clear from the
raw data file that it is not the case and will give an error. In some rare cases this might need
to be circumvented (e.g. if truly continuous data are stored in chunks (pseudo-epoched)
and SPM does not recognise it automatically).

e Save original header - the generic fileio interface does not let through all the possible header
fields abailable for specific formats. Sometimes those missing header fields are necessary
for particular functionality and this option allows to keep the complete original header as
a subfield of the converted header. A particular case where this is useful is processing of
continuous head localisation data in CTF MEG system which requires some information
from the original header to interpret it.
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e Input data format - this option allows to force a particular low-level reader to convert the
data. It is not usually necessary. Power users can find possible values for this field in the
code of ft_read_header function.

12.2 Converting arbitrary data

It might be the case that your data is not in any standard format but is only available as an ASCII
or Excel file or as a variable in the MATLAB workspace. Then you have two options depending
on whether you would be willing to use a MATLAB script or want to only use the GUI.

"Prepare’ interface in SPM has an option to convert a variable in the MATLAB workspace to
SPM format. Only a few question will be asked to determine the dimensions of the data and the
time axis. The other information (e.g. channel labels) can be provided via the SPM reviewing
tool.

If you are willing to write a simple MATLAB script, the most straightforward way to convert
your data would be to create a quite simple FieldTrip raw data structure (MATLAB struct) and
then use SPM’s spm_eeg_ft2spm.m function to convert this structure to SPM dataset. Missing
information can then be supplemented using meeg methods and SPM functions.

FieldTrip raw struct must contain the following fields:

e .trial - cell array of trials containing matrices with identical dimensions (channels x time).

e .time - cell array of time vectors (in sec) - one cell per trial, containing a time vector
the same length as the second dimension of the data. For SPM, the time vectors must be
identical.

e .label - cell array of strings, list of channel labels. Same length as the first dimension of
the data.

If your data only has one trial (e.g. it is already an average or it is raw continuous data) you

should only have one cell in .trial and .time fields of the raw struct.
An example script for converting LFP data can be found under man\examplel_scripts\spm_eeg_convert_a
As some of third party toolboxes whose format SPM can convert also support converting

arbitrary data via GUI (e.g. EEGLAB), it is also possible to use one these toolboxes first to

build a dataset and then convert it to SPM.

12.3 The M/EEG SPM format

SPMB8 introduced major changes to the initial implementation of M/EEG analyses in SPM5. The
main change was a different data format that used an object to ensure internal consistency and
integrity of the data structures and provide a consistent interface to the functions using M/EEG
data. The use of the object substantially improved the stability and robustness of SPM code. The
changes in data format and object details from SPMS8 to SPM12 were relatively minor. The aims
of those changes were to rationalise the internal data structures and object methods to remove
some ’historical’ design mistakes and inconsistencies.

SPM M/EEG format consists of two files: header file with extension .mat and data file with
extension .dat. The header is saved in the mat file as a struct called 'D’. Description of the
struct fields can be found in the header of meeg.m . When a dataset is loaded into memory
by SPM using the spm_eeg_load function (see below) the header is converted to @meeg object
and the data are linked to the object using memory mapping so they are not actually kept in
memory unnecessarily. The object can only be manipulated using standardized functions (called
methods), which makes it very hard to introduce any inconsistency into SPM M /EEG data. Also,
using methods simplifies internal book-keeping, which makes it much easier to program functions
operating on the M/EEG object. SPM functions only access the header data via the object
interface and we strongly encourage the power users to become faimilar with this interface and
also use it in their own code. Using the object can make your code simpler as many operations
requiring multiple commands when working with the struct directly are already implemented in
@meeg methods. When converting from struct to an object an automatic integrity check is done.
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Many problems can be fixed on the fly and there will only be an error if SPM does not know how
to fix a problem. Messages from the automatic consistency checks will sometimes appear during
conversion or other processing steps. They do not usually indicate a problem, unless an error is
generated.

12.4 Preparing the data after conversion and specifying batch
inputs

SPM does its best to extract information automatically from the various data formats. In some
cases it can also supplement the converted dataset with information not directly present in the raw
data. For instance, SPM can recognize common EEG channel setups (extended 1020, Biosemi,
EGI) based on channel labels and assigns "EEG’ channel type and default electrode locations for
these cases. However, there are data types which are either not yet supported in this way or
do not contain sufficient information for SPM to make the automatic choices. Also the channel
labels do not always correctly describe the actual electrode locations in an experiment. In these
cases, further information needs to be supplied by the user. Reading and linking this additional
information with the data was the original purpose of the Prepare interface. In SPM12 with
removal of interactive GUI elements from all preprocessing functions some of those elements were
added to 'Prepare’ so that the users will be able to prepare inputs for batch tool using interactive
GUI. These tools can be found in the 'Batch inputs menu’.

"Prepare’ interface is accessed by selecting Prepare from the Convert drop-down menu in the
GUI A menu (easily overlooked) will appear at the top of SPM’s interactive window. The same
functionality can also be accessed by pressing “Prepare SPM file” in the SPM M/EEG reviewing
tool. Note that in the latest Mac OS versions the menu can appear at the top of the screen when
clicking on the interactive window rather than in the window itself.

In this menu, an SPM M/EEG file can be loaded and saved using the “File” submenu. "Load
header’ option makes it possible to only load the header information from a raw data file without
converting any data. This is useful to subsequently use this header information (e.g. channel
labels) for specifying batch inputs. ’Import from workspace’ is a basic GUI functionality for
converting any data to SPM M/EEG format. It will scan the workspace for any numeric arrays
and list them for the user to choose the right one. It will then ask to choose the number of
channels and trials to correctly identufy the dimensions of the data and also to specify the time
axis by providing the sampling rate and time of the first sample (in ms). Finally it will ask the
user to name the dataset. Then the dataset will be created and opened in SPM reviewing tool
(see below) where the rest of the information (e.g. channel labels) can be supplemented.

The ’Batch inputs’ submenu contains tools to interactively specify and save some pieces of
information that can be then used as inputs to different batch tools.

"Channel selection’ as the name suggests is for making channel lists. A list of all channels in the
dataset is shown and the user can select a subset of them and save in a mat-file. Channel set
selection is necessary in many batch tools and choosing a pre-saved list is a convenient way of
doing it.

"Trial definition’ tool makes it possible to interactively define trials based on the events in the
dataset. You will first need to specify the time window (in ms) to be cut around the triggers and
the number of different conditions you want to have. A list will then pop up, and present the
found triggers with their type and value entries. These can sometimes look strange, but if you
want to run a batch or script to do the epoching, you have to first find out what the type and
value of your event of interest are. Fortunately, these tend to be the same over scanning sessions,
so that you can batch multi-subject epoching using the types and values found in one subject.
You also have to come up with a “condition label” for each trial type, which can be anything you
choose. This is the label that SPM will use to indicate the trial type of a trial at later processing
stages. It is possible to use several types of triggers for defining trials with the same label - in
the GUI, just select several events using Shift or Ctrl key. Finally, you can specify a shift for
each condition so that the zero time of the trial will be shifted with respect to the trigger (e.g. to
account for projector delay). When all conditions are specified, you can choose to review a list
of epochs and can edit the list by unselecting some of them. Note that for such manual tweaking
to work you must define trials on the same dataset that you will later epoch. You can then save
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the completed trial definition.

"Montage’ menu allows one to specify custom montages. The most generic way to do it is via
"Custom montage’ option which brings up montage editing GUI. On the left hand side, you will
find the montage-matrix, where each row stands for a new channel. This means the labels in the
left column describe the new labels. The old labels are on top, that means, each row contains
weights for how the old channels must be weighted to produce new channels in the montage. On
the right hand side, you see a graphical representation of the current matrix. The default is the
identity matrix, i.e., the montage will not change anything. The concept is very general. For
example, if you want to remove channels from the data, just delete the corresponding row from
the montage matrix. To re-reference to a particular channel the column for this channel should
be -1 for all rows, except the row corresponding to itself which should be 0, whereas the other
channels should have 1 in the intersection of their column and row (the diagonal of the matrix)
and 0 elsewhere. For average reference the matrix should have (N — 1)/N (where N is number
of channels) at the diagonal and —1/N elsewhere. In principle, any montage can be represented
this way. The specification will only need to be done once for your setup and then you can save
the montage and use it routinely. After changing the weights of the matrix, you can visualise the
montage by pressing the button in the lower right below the figure.

Simpler way to specify some common montages is via 'Re-reference’ and '"ROI’ options. 'Re-
reference’ is for rereferencing montage specified by choosing one or more (possibly all) channels as
reference from the EEG channel list. '"ROT’ is for averaging across channel groups (e.g. reducing
the data to ’Frontal channels’, ’Occipital channels’ etc.).

In many cases in SPM the order of the conditions in the file is important (for instance in 3D source
reconstruction and in DCM). The ’Sort conditions’ functionality makes it possible to change the
specification of the order (without actualy changing the data file). Subsequently every time the
order of the conditions is important, the order thereby specified will be used. For instance, if you
sort conditions in an epoched file and then average it, the conditions in the average file will be
ordered as you specified. If you originally defined the trials by selecting events from a list then
the order in which you made the selection will be preserved. You can see the present order in a
file using the condlist method (condlist(D)). The specified order can be saved in a mat-file and
used for batch processing (in batch version of "Prepare’, see below).

The “Channel types” submenu allows reviewing and changing the channel types. Use the “Review”
option to examine the presently set channel types. During conversion, SPM will make an informed
guess at the correct channel types but this can sometimes go wrong, especiallly for EEG data. To
set a particular channel group to some channel type, select this type from the menu. A list of all
channels will appear. Select the subset whose type you would like to set. Ctrl and Shift buttons
can be used to refine the selection. Press OK to apply your choice. It is especially important to
correctly specify which are the EEG channels. MEG types are assigned automatically by SPM
and cannot be modified using the GUL

The “Sensors” submenu can be used to supply information about the sensor positions to the
file. This information is needed to perform 3D source reconstruction and DCM analysis for
EEG and MEG data. Sensor positions for MEG are extracted from the raw data automatically
and are already present. For EEG, sensor positions are usually measured by a special device
(such as Polhemus) and are not part of the dataset. Even if you do not measure electrode
positions routinely in your lab, we recommend to perform at least one initial measurement with
the electrode cap you use and use the result as your standard template. In order for SPM to
provide a meaningful interpretation of the results of source reconstruction, it should link the
coordinate system in which sensor positions are originally represented to the coordinate system
of a structural MRI image (MNT coordinates). In general to link between two coordinate systems
you will need a set of at least 3 points whose coordinates are known in both systems. This is
a kind of Rosetta stone that can be used to convert a position of any point from one system
to the other. These points are called “fiducials” and the process of providing SPM with all the
necessary information to create the Rosetta stone for your data is called “coregistration”. The most
commonly used fiducials are the nose bridge and the two pre-auricular points. The coordinates of
these points for SPM’s standard template image are hard-coded in SPM code. So if you provide
the coordinates of these specific points with your sensor positions, it will be enough for SPM.
If you do not have these fiducials but have other anatomical landmarks (for instance 3 EEG
electrodes whose positions can be easily marked on a structural image) it will be possible to use
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them for coregistration as well, but that will require additional input from you. In addition, or
as a replacement of fiducials a headshape measurement may be used. This measurement is done
by an operator moving his digitizer pen around on the subject’s scalp and generates many more
data points than just 3 fiducials. EEG sensor and fiducial positions can be added to an SPM file
using the “Load EEG sensors” menu. There are 3 options:

e “Assign default” - assigning default sensor positions. If this is possible, it will be done
automatically at conversion but this option can be used to revert to default sensor positions
after making some changes.

e “From a *.mat file” - this option is for the kind of files that were used in SPM5 and can
also be used for any kind of locations without trying to get them into one of the standard
formats. SPM will ask for two files. The sensors file should contain an N x 3 matrix, where
N is the same as the number of channels whose type is set to “EEG” and the order of the
rows matches the order of these channels in the SPM file. The fiducials file should contain
a K x 3 matrix, where K (usually 3) is the number of fiducials. You will then be asked to
provide labels for these fiducials. They should appear in the same order as the rows in the
file.

e “Convert locations file” - this option uses a function from the internal “fileio” toolbox that
supports several common formats for EEG channel position specification such as *.sfp and
BESA’s x.elp. It can also read Polhemus files from FIL and FCDC. In general Polhemus
devices do not have a standard data format so if you are using Polhemus at a different site
is is most likely that your Polhemus file will not be recognized by SPM directly. You will
need to convert it to another format. An *.sfp file is the easiest to create (for instance
in Excel). It is just an ASCII file containing a column of channel labels and 3 columns of
cartesian coordinates. Check “fileio” website? for a complete list of supported formats. The
file you are importing can also contain positions of fiducial points or any other named points
that do not necessarily correspond to channels. You can also include multiple headshape
points with the label “headshape”. The important thing is that there are coordinates for
each channel that was assigned “EEG” type.

The fiducials for MEG are automatically loaded from the dataset. However, in some MEG
setups the situation is more complicated. For instance, it might be convenient to attach the coils
marking MEG fiducials to the top of the head, where there are no clear anatomical landmarks.
In this case there should be an additional file measured with a Polhemus-like device that contains
the positions of MEG fiducials and something that can be linked to a structural image (either
anatomical landmarks or a headshape) in the same coordinate system. The way SPM handles
this situation is in two steps. First, this additional file is converted into the same coordinate
system in which MEG sensors are represented and it replaces the original MEG fiducials. At a
later stage having MEG sensors and fiducials/headshape in the same coordinate system, SPM
uses the fiducials/headshape for coregistration with standard MRI template or subject’s own
structural image. If you can mark the points where your MEG fiducial coils were located on a
structural image, the step described below is not necessary. It is also possible that the digitizer
measurement is stored with the raw data. Then SPM will read it automatically. Otherwise, the
additional fiducials/headshape file can be loaded using the “Load MEG Fiducials/Headshape”
menu. The supported formats are the same as for electrode locations. It is also possible to create
a fiducials /headshape MATLAB struct and store it in a *.mat file. This file will also be recognized
by SPM. The struct should be called shape and it should contain the following fields: shape.pnt
- a K x 3 matrix (possibly empty) with headshape points i.e. points that are on the surface
of the head and have no labels, shape.fid.pnt - M x 3 matrix with fiducial points i.e. points
that have labels, shape.fid.label - M x 1 cell array of strings with the labels of the points in
shape.fid.pnt. As mentioned above, M should be at least 3 for the coregistration to work.

If you did not use default 3D positions, after loading the sensor positions you can perform
coregistration of your sensors with SPM’s template head model. This initial alignment is helpful
to verify that the sensor information you supplied were interpreted correctly and should also be

2fileio: http://fieldtrip.fcdonders.nl/dataformat
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done if you would like to generate a 2D sensor template based on your 3D sensor positions (see
below). The 2D-coordinates will be used for displaying the data in a topologically meaningful
way. This is implemented using the “Coregister” option. For details of how this option works see
the 3D source reconstruction chapter 14.

'Define EEG referencing” menu makes it possible to specify the original recording reference
for EEG data. This is necessary for source reconstruction and DCM to work correctly. Most
commonly the reference one of the sensors and it can be chosen from the list. It can also be
a combination of two sensors (e.g. averaged ears) or average reference, specified by selecting
the relevant or all sensors respecively. It could be possible to support even more complicated
referencing schemes (rarely used in research setting) like double banana. That would require
loading a special montage file where the referencing arrangement is specified.

The “2D Projection” menu deals with the generation of representative 2D-coordinates for the
sensors. Note that generating 2D-coordinates is not obligatory. If the 2D-coordinates are not
specified, the sensors will be, when displaying, presented in a default square grid. Missing out
on topographically meaningful 2D-coordinates might be useful when working on few channels.
The 2D-coordinates are also used for producing scalp-level SPMs in voxel space when converting
M/EEG data to images for later statistical analysis (see below). If you are planning to do
3D source reconstruction or DCM, 2D-coordinates are not necessarily required. Also, you can
load 2D-coordinates from a file (several example files are available in the EEGtemplates SPM
directory). 2D-coordinates can also be generated by projecting the 3D sensor positions to a
plane. This is done automatically when default 3D coordinates can be assigned, and also for
MEG. In case of custom EEG sensor positions coregistration should be performed first (see
above). The resulting 2D-coordinates are displayed in SPM’s graphics window. You can modify
these projected 2D-coordinates manually by adding, deleting and moving sensors. To select a
sensor, click on its label. The label will change its color to green. If you then click at a different
location, the sensor will be moved to this position. Note that, at this stage, SPM does not check
whether there is any correspondence between the labels of the coordinates and the labels of the
channels stored in the SPM file. When you are satisfied with the 2D-coordinates, select “Apply”
from the menu and the coordinates will be assigned to EEG or MEG channels according to their
labels. Note that 2D-coordinates cannot be assigned to channels of other types than M/EEG.

Remember to save the file using “File/Save” after you finished modifying it using the Prepare
interface. Your changes will not be saved automatically. In case of invoking Prepare from
the reviewing tool you should press the ’OK’ button that will appear at the bottom left of the
interactive window, and then save the file with the “Save” button of the reviewing tool.

In the rare case that you neither have measured sensor locations, or fiducials, and the supplied
standard templates do not work for you, you can also supply a so-called channel template file,
which contains all information necessary. However, remember, that if you do not supply any
2D-coordinates, you can still use all SPM functions, however, SPM will use 2D-coordinates laid
out in a topographically unmeaningful rectangular pattern.

A channel template file contains four variables:

Nchannels - The number of channels

Cnames - A cell vector of channel names. Each cell can contain either
a string or a cell vector of strings. The latter allows for
multiple versions of a given channel name. Case can be
ignored, i.e., it doesn’t matter whether channel names are
in small or capital letters.

Cpos - A 2 x Nchannels-matrix of channel coordinates on a 2D
plane. In z- and y-direction the minimum coordinate must
be < 0.05 and the maximum coordinate must be > 0.95.

Rxy - A factor that determines the ratio of the width of the dis-
play plots to their height when displaying the data. Stan-
dard is 1.5.

Note that the channel template files and 3D coordinate files with labels (such as *.sfp) can
contain many more channel labels than your data file. SPM searches, for each channel in the
data, through the labels in the channel template file. If the labels match, the coordinate is used.
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12.4.1 Prepare (batch)

Many of the operations of the 'Prepare’ tool can be batched. The relevant batch tool is accessed
by selecting "Prepare (batch)’ from ’Convert’ menu. One or more tasks can be selected (note that
the order can matter). The configuration of each task should be clear based on the descriptions
above and will not be describe in detail here.

12.5 Integration of SPM and Fieldtrip

The SPM distribution includes the latest version of the FieldTrip toolbox?. FieldTrip is a MATLAB
toolbox for MEG and EEG analysis that is being developed at the Donders Institute for Brain,
Cognition and Behaviour at the Radboud University Nijmegen together with collaborating insti-
tutes. FieldTrip functions can be used for many kinds of analysis which are not supported in SPM
proper. However, FieldTrip does not have extensive graphical user interface and its functional-
ity should be accessed by writing scripts. Full reference documentation for FieldTrip including
example scripts is available at the FieldTrip website. The SPM distribution also contains some
documentation, contained as help comments in FieldTrip functions. These can be found in the
directory external\fieldtrip.

Fieldtrip data structures can be converted to SPM EEG files using the spm_eeg_ft2spm
function. SPM M/EEG data, once loaded with the function spm_eeg_load can be converted to
FieldTrip format using the methods ftraw (with syntax D.ftraw or ftraw(D)) and fttimelock
(with syntax D.fttimelock or fttimelock(D)). For SPM time-frequency datasets fttimelock
method converts the data to Fieldtrip time-frequency structure.

12.6 Loading data into workspace

If you use the GUI only, there is no need to read this section because the functions called by the
GUI will read the data automatically. However, if you plan to write scripts and access the data
and header information more directly, this section should contain all the necessary information
to do so.

An SPM M/EEG file can be read using the spm_eeg_load function. Without any arguments
a file requester asks for the name of the file. With a string argument P, spm_eeg_load(P) will
attempt to read a file with the name P. The SPM-format stores the binary data in a *.dat file.
All header information are stored in a *.mat file. This *.mat file contains a single struct named
D which contains several fields. When using spm_eeg_load, the struct is transformed into an
object, and the data are linked into this object. The linking is done via memory mapping using
file_array objects. Note that the data should always be read using the routine spm_eeg_load.
The memory mapped data can be addressed like a matrix (see below) which is convenient for
accessing the data in a random access way. However, a word of caution: If you write new values
to this matrix, the matrix is not only changed in the object (in memory), but also physically on
the hard disk.

12.7 The meeg object

This section describes the meeg object and its methods. This information is intended for power
users who would like to write their own scripts and high level functions integrated with SPM.
meeg methods are functions that operate on an meeg object, loaded with spm_eeg_load. The
code for all methods can be found in the @meeg SPM directory. Most methods provide some
minimalist help text. In the following, we will assume that the object variable is called D and
was loaded by using D = spm_eeg_load;. Methods can be called in two ways, either as standard
function call with D as the first input (e.g. chanlabels(D, 1) returns the label of the first channel)
or with struct-like syntax D.chanlabels(1).

3FieldTrip: http://fieldtrip.fcdonders.nl/
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12.7.1 Constructor meeg

The meeg method is a constructor. Called without any arguments it will produce a consistent,
but empty object. It is also possible to provide data dimensions as inputs and create a dataset
with default labels etc. that can be susbsequently updated using other methods. Most functions
in SPM create new datasets in a different, more convenient way using clone method (see below).
In SPM, the constructor is called when a struct has been loaded into memory by spm_eeg load,
and is transformed into an meeg object. Importantly, the constructor also checks the consistency
of the object.

12.7.2 Array-like interface

The actual M/EEG data are memory mapped and can be accessed directly using something like
d = D(:,:,1). This command would put the first trial over all channels and time points into
the variable d. The first dimension of D is channels, the second peri-stimulus time, and the third
is trials. If the data are time-frequency transformed, there would be four dimensions, where the
frequency dimension is squeezed in at the second position (i.e., channels/frequencies/time /trials).
If you wanted to change the values of the data, you would write something like D(1,2,3) = 1;,
which would change the value of the first channel, second time-point, and third trial to 1.

12.7.3 display

This method will return, in the MATLAB window, some information about the object, e.g.,
display (D). The same will hapen when just writing D in the command line and pressing Enter.

12.7.4 Number methods

These are methods which return the number of something; they count the number of chan-
nels, etc. For example, to find out how many channels an MEEG object contains, you would
use D.nchannels, where D is the object. Number functions are nchannels, nfrequencies,
nsamples, ntrials. You can also use size(D) to get all the dimensions of the data array at
once.

12.7.5 Reading and manipulation of information

There are a large number of methods that can be used to either read or write some information.
The method name is the same but it depends on the arguments whether something is read or
stored. For example, when you use the method badchannels, you can either type D.badchannels,
which returns the indices of all bad channels. You could also change information about specific
bad channels, e.g., D.badchannels([43:55], 1) will flag channels 43 to 55 as bad. You could
also use D.badchannels([43:55], ones(1,13), i.e. you can either use a scalar to change all
channels listed, or supply a 0/1-flag for each channel. There are other functions which use the
same logic. In the following we will list these functions and describe briefly what they do but
won’t go into much detail. We believe that you can work it out using the badchannels-example.

selectdata

With this method the data can be indexed using channel labels, times and condition labels instead
of indices which you would usually need to find out in your code. For instance D.selectdata(’Cz’,
[0.1 0.12], ’0ddball’) will return the waveforms of channel Cz between 100 and 120 ms in
peristimulus time for the condition “Oddball”.

badchannels

Flags/unflags channels as bad.

badtrials

Flags/unflags trials as bad.



106 CHAPTER 12. EEG/MEG PREPROCESSING — REFERENCE

chanlabels

This method reads or writes the label of the channels (string). Note that the channel labels must
be unique.

chantype

This method reads or writes the type of a channel (string). Currently, the types recognized by
SPM are: “EEG”, “MEG”, “EMG”, “EOG”, or “Other”, but in principle type can be any string.
clone

This is a useful method for creating new datasets by copying the header information from an
existing dataset and creating a new blank data file. Optionally the data dimensions can be
changed when cloning. This method is used by SPM preprocessing functions to create new
datasets where the processed data is written out.

conditions

This method reads or writes the name of the condition of an epoch (string).

events

This method returns the events stored with each trial. Events are records of things that happened
during the experiment - stimuli, responses, etc. Before a file is epoched all the events are stored
with the only trial and they can be used by the epoching function. For an epoched file SPM
stores with each trial the events that occured within that trial or possibly in some time window
around it (this is a parameter of the epoching function that can be specified). You can use this
information for your analysis (for instance to sort trials by reaction time). Events are represented
by a structure array with the following fields:

e .type - string (e.g. “front panel trigger”)

e .value - number or string, can be empty (e.g. “Trig 17).

e .time - in seconds in terms of the original file

e .duration - in seconds (optional)

Note that in order to find out the time of an event in peristimulus time you will need additional
information provided by “trialonset” method.
fname

This method reads or sets the name of the mat-file, in which the header information are stored.

fnamedat

This method returns the name of the dat-file, in which the data are stored. Most commonly the
dat-file will have the same name as the mat-file and will be stored in the same folder. However for
some less common uses there is a possibility to link an meeg header to a binary datafile located
elsewhere. (See also 1ink method).

frequencies
If the data has been transformed to time-frequency, this method reads or writes the frequencies
(Hz) of the data.

fsample

This method reads or writes the sampling rate of the data. In SPM, all data must have the same
sampling frequency.
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fullfile

Returns the full path to the dataset mat file. This is a shortcut for commonly used fullfile(D.path,
D.fname).

history

This method can read or add to the history of a file. Usually, each time a SPM function (e.g.
like converting) does something to a data set, the function name and arguments (possibly after
collecting them with the GUI) are stored in the history. Effectively, the history is a documentation
of how exactly the data were processed. Of course, the history function can also be used to
replicate the processing, or generate (modifiable) scripts for processing other data in the same
way.

montage

This method makes it possible to define online montages to apply linear transforms to the data
without writing it out as a new dataset. See the method code for more documentation.

path

This method reads or writes the path, under which the mat- and dat-files are stored.

repl

This method returns the number of replications measured for a condition. This method is usually
only used on single trial data.

timeonset

This method reads and writes the time of the first sample in a trial in peristimulus time (in
seconds). In SPM all trials should have the same time axis. Therefore there is only one timeonset
in a file. For instance, if you have a pre-stimulus baseline of 100 ms and the stimulus comes at
time zero, timeonset will be -0.1. In general it is possible to define the time axis any way you like
and there is no requirement that the stimulus comes at 0 or that there is baseline with negative
times (which was the case in SPMS5).

trialonset

This method should not be confused with the more commonly used timeonset (see above). It
returns the times of the first sample of each trial in the original raw data file time. This information
is not always available to begin with. It may also be invalidated during processing (for instance if
you merge two epoched files). When this happens the information is discarded. For SPM analysis
trialonset is not usually necessary. However it may be useful if you want to relate something in
your analysis to the timing of your experiment, for instance create a regressor for GLM analysis
of single trials to account for fatigue. trialonset is also necessary for interpretation of events in
epoched files.

transformtype

This method reads and writes the type of the data transform (string). For example, when the
data are transformed to a time-frequency represention, transformtype is set to “TF”. For time
data, this is “time”.

type
This method reads and writes the type of the data (string). Currently, this string can be “con-
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tinuous”, “single”, “evoked”, or “grandmean”.
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units

This method reads and writes the units of the measurements (string). The units are channel-
specific, i.e., each channel can have its own units.

12.7.6 Reading of information

Some methods can only read information but not change them. These are:

condlist

This method returns a list of unique condition labels in the file. The order of this list is important
as SPM functions rely on it many cases. For instance, when averaging an epoched dataset the
conditions in the averaged file will be in the order of condlist. The order of condlist does not
have to be the same as physical order of trial on disk and can be changed (See ’Sort conditions’
below).

coor2D

This method returns the 2D-coordinates used for displaying or writing sensor data to voxel-based
images. These coordinates can also be useful e.g. to find all the frontal channels (y-coordinate
above 0.5) or all the left channels (x-coordinate below 0.5) etc.

ind-methods

This is a group of methods that return indices into the data array based on labels of the relevant
data dimension. These include:

e indchannel - returns indices given channel labels. Several labels can be provided together
as a cell array.

e indchantype - returns indices given channel types. Several types can be provided together
as a cell array. An additional flag ’‘GOOD’ or '/BAD’ can be provided to return only good
or bad channels.

e indfrequency - returns indices given frequencies (for TF datasets).
e indsample - returns indices given times (in sec).

e indtrial - returns trial indices given condition labels. Several labels can be provided together
as a cell array. An additional flag ’"GOOD’ or 'BAD’ can be provided to return only good
or bad trials.

modality

This method returns the modality of the dataset (MEG, EEG, etc.). There can be datasets with
multiple modalities and in this case the method returns '"Multimodal’ with a list of modalities as
the second output.

time

This method returns the time axis of the dataset (in sec). When given sample indices as input it
will return the corresponding times.
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sensors

This method returns the sensor locations structure. There is an additional argument for modality
(EEG’ or 'MEG’) as SPM supports datasets with more than one sensor type. The exact way
sensors are represented depends on the modality and you can find more information in Fieldtrip
documentation as the sensors structure is produced and used by code originally developed at by
the Fieldtrip team. Note that in SPM, sensors are not directly linked with channels, unlike for
instance in EEGLAB. So there is no requirement for the number of sensors and channels to match
or even for any relation between them. Of course loading sensors completely unrelated to your
data will not be very useful and will eventually lead to an error. This kind of representation is
more powerful than a simple correspondence.

fiducials

This method returns the fiducials. They are represented as shape struct (see the discussion
of loading fiducials by the Prepare function) with an additional field for units that is assigned
automatically.

ftraw

This method converts an object to a FieldTrip structure. Additional arguments can be provided
to only convert a subset of the data.

fttimelock

Similar to ftraw but converts the data to a different kind of Fieldtrip structure.

12.7.7 Manipulations of the data on disk

delete

This function deletes the mat- and dat-files from the disk. This is useful, for instance, in a script
to delete the intermediate datasets after the next processing step has been completed.

link

Links a header in the workspace to a binary data file on disk. This is usually done automatically
when loading the dataset. The dimensions of the datafile should match the header.

unlink

Unlinks the header from the data. This can be useful e.g. for working with the header when the
datafile is not available.

blank

Creates a new empty datafile matching header dimensions.

move

Renames or moves a dataset

copy
Makes a copy of the dataset.

save

This method saves the object to the mat- and dat-files.
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12.7.8 Struct-like interface

In addition to pre-defined internal fields that should only be manipulated using methods, the
meeg object also allows storing additional information in it as long as the names of additional
fields do not clash with the names of existing methods. This functionality is used by some SPM
functions. For instance, the results of 3D source reconstructions are stored in D.inv field for
which no methods are necessary to access and modify it. You can use this functionality in your
scripts (try commands like D.myfield = ’hellow world’; disp(D.myfield);). The methods
rmfield and isfield work for these extra-fields as they would if the meeg object was a struct.
Several of the methods support the struct-like interface functionality: fieldnames, getfield, rmfield,
isfield. The struct-like interface only allows to access those extra-fields that were added using it
and not the core fields of the object.

12.8 SPM functions

In this section we will describe the high-level SPM functions which are used for preprocessing
M/EEG data. These functions are fairly standard and should allow a simple preprocessing of the
data (e.g., epoching, filtering, averaging, etc.). Here, we will just describe what each function
roughly does and what the batch input arguments mean. More detailed information about the
syntax for scripts can be found in the help text of the code. For example, to get detailed help on
epoching, type help spm_eeg_epochs. The general syntax is the same for all functions. Input
arguments are provided in a struct (by convention called S), whose fields contain the arguments.
A typical call, e.g., from a script would be: D = spm_eeg_epochs(S), where S is the input
struct, and D contains the return argument, the epoched meeg object. Note that, with all SPM
functions, the object is also always written to hard disk. The filenames of the mat- and dat-files
are generated by prepending (by default) a single letter to the old file name. In the example of
epoching this would be an ’e’. The idea is that by calling a sequence of functions on a file, the list
of first letters of the file name shows (roughly) which preprocessing steps were called to produce
this file. Note that another way of calling SPM functions and specifying all input parameters is
to use the batch interface.

12.8.1 Epoching the data: spm_eeg_epochs

Epoching cuts out little chunks of continuous data and saves them as “single trials”. In M/EEG
research, this is a standard data selection procedure to remove long gaps between trials and extract
time segments with the same time relation to the event of interest. The first input to epoching is
a continuous M/EEG dataset. It can be either data in the time domain or time-frequency data.

The epoching function can deal with three different ways of specifying trials (chosen under
"How to define trials’) . The first way ("Define trial’) is to specify trials based on events stored
in the dataset. One should define the time window in peristimulus time (which will be the same
for all trials). In addition it is necessary to specify the events (triggers) around which the epochs
will be “cut’ . The user can add multiple entries for all the event types of interest. SPM identifies
events by their “event type” and “event value”. These are strings or numbers which the software
run by the EEG or MEG vendor uses when generating the measurement file. If you don’t know
what they are for your system the interactive GUI in 'Prepare’ will present the found triggers
with their type and value entries. These tend to be the same over scanning sessions, so that you
can batch multi-subject epoching using the types and values found in one subject. You also have
to come up with a “condition label” for each trial type, which can be anything you choose. This
is the label that SPM will use to indicate the trial type at later processing stages. It is possible
to use several types of triggers for defining trials with the same label. Using the *Shift’ parameter
it is possible to shift 'time zero’ of the trial relative to the original event. This can be useful e.g.
to account for known projector delay.

The second choice is to load a trial definition file. This file can be produced by an interactive
GUI tool in 'Prepare’ (under 'Batch inputs’/’Trial definition’) or by the user’s custom code.
Trial definition file is a mat-file containing either variables named ’trialdef’ and 'timewin’ or the
variables ’tr]’ and ’conditionlabels’. ’trialdef’ and ’timewin’ are analogous to the specification
described above. trl is a N x 2 matrix, where each row contains the start and end of a trial
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(in samples). Optionally, there can be a third column containing the offset of the trigger with
respect to the trial. An offset of 0 (default) means that the first sample of the trial corresponds
to the trigger. A positive offset indicates that the first sample is later than the trigger, a negative
offset indicates that the trial begins before the trigger. In SPM the offset should be the same
for all trials. The need to specify a whole column is for interoperability with FieldTrip where
trials can have different time axes. In addition you have to specify conditionlabels (a single
string or a cell array of strings), either one for each trial or one for all trials. Using trl and
conditionlabels the user can have full control over the way the data are epoched. So if your
conditions are defined in a more complicated was than just based on a single trigger you should
write your own code that will output a file with trl and conditionlabels variables and that
file can then be used as input to epoching. When a trial definition is created in 'Prepare’ GUI
both ’trialdef” and ’trl’ versions are saved. ’trl’ takes precedence if the mat file is later used to
epoch the same dataset on which it was defined (recognised based on the file name). Otherwise
‘trialdef’” will be used and ’tr]’ - ignored. This makes it possible to define trials using GUI on a
single file and then use the same trial definition mat-file on other datasets with the same triggers.

The third trial definition option is only relevant for studies of steady-state data (i.e. spectra).
It is possible to break the data into arbitrary segments with length defined by the user.

If the peri-stimulus time starts before zero, the epoched data will be baseline-corrected by
default, i.e. the mean of the pre-stimulus time is subtracted from the whole trial. The baseline
correction can be removed if undesirable by setting 'Baseline correction’ to 'no’.

The ’Event padding’ option makes it possible to store with each trial some events that occur
around it withing the specified interval. This is useful e.g. when a response comes long time after
a stimulus but needs to be included with the trial e.g. to compute the reaction time at a later
stage.

'Filename Prefix’ option is for specifying the prefix to be added to the dataset name after
epoching. The default prepended output letter is ’e’.

12.8.2 Filtering the data: spm_eeg_filter

Continuous or epoched data can be filtered, over time, with a low-, high-, stop- or bandpass-
filter. SPM uses a Butterworth filter to do this. Phase delays are minimised by using MATLAB
's filtfilt function which filters the data twice, forwards and backwards. The batch interface
makes it possible to define filter type, band, cutoff frequencies, direction and order. The default
prepended output letter is ’f’.

12.8.3 Baseline correction: spm_eeg_bc

This function subtracts the baseline from channel data. You will be asked to specify the baseline
period in ms (e.g. [-100 0]). A new dataset will be written out with the name prepended by "b".

12.8.4 Artefact detection and rejection: spm_eeg_artefact

Some trials not only contain neuronal signals of interest, but also a large amount of signal from
other sources like eye movements or muscular activity. These signal components are referred to
as artefacts. There are many kinds of artefacts and many methods for detecting them. The
artefact detection function in SPM is, therefore, extendable and can automatically detect and use
plugin functions that implement particular detection algorithms. Simple algorithms presently
implemented include thresholding of the data, thresholding of the difference between adjacent
samples (to detect jumps), thresholding peak-to-peak amplitude and detection of flat segments.
Channels containing artefacts in large proportion of the trials are automatically marked as bad.

Note that the function only indicates which trials are artefactual or clean and subsequent
processing steps (e.g. averaging) will take this information into account. However, no data is
actually removed from the *.dat file. The *.dat file is actually copied over without any change.
The default prepended output letter is ’a’.

Click on “File name” and select the dataset. Double click “How to look for artefacts” and a
new branch will appear. It is possible to define several sets of channels to scan and one of the
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several different methods for artefact detection. For each detection method there are specific
configuration parameter (e.g. for thresholding - the threshold value).

12.8.5 Downsampling: spm_eeg_downsample

The data can be downsampled to any sampling rate. This is useful if the data were acquired at a
higher sampling rate than one needs for making inferences about low-frequency components. For
example, resampling from 1000 Hz to 200 Hz would cut down the resulting file size to 20% of the
original file size. The prepended output letter is ’d’.

12.8.6 Rereferencing: spm_eeg_montage

Sometimes it is necessary to re-reference the data to a new reference. For sensor level analysis it
can be useful to use a reference that emphasizes the effects of interest. In SPM this is done by
specifying a weight matrix, which pre-multiplies the data. This is a general approach which allows
one to re-reference to the average over channels, to single channels, or any linear combination of
channels, e.g. the average over a pair of channels. The prepended output letter is "M’

The montage function has several 'modes’ of action which have to do with the fact that it
is possible to use online montages which do not actually change the data on disk but apply the
montage on line when reading the data. M/EEG objects with online montage appear as if the
montage has been applied (e.g they have channel labels corresponding to the post-montage state).
The most common mode "Write’ does not use online montage but rather applies montage to the
data and generates a new dataset. ’'Switch’ can switch between previously defined montages,
’Add’ cann add a montage to the set of montages in the dataset without switching to it and
"Clear’ removes online montages and returns back to the original channel set.

A montage is specified by a textttmat-file, which contains a struct with 3 fields: labelnew
(labels of new channels), labelorg (labels of original channels), and the montage-matrix tra
(“tra” as in transform). Montages files can be generated and edited using 'Prepare’ GUI.

Finally, you need to specify whether you want to “keep the other channels”. There may be
channels that are not involved in the montage. For instance, if you the apply montage defined
for your EEG channels but there are also EOG or trigger channels in the file. If you answer “yes”,
they will just be copied to the new file unaffected. If you answer “no” they will not be included
in the new file.

12.8.7 Grand mean: spm_eeg_grandmean

The grand mean is usually understood as the average of evoked responses over subjects. The
grand mean function in SPM is typically used to do exactly this, but can also be used to average
over multiple EEG files, e.g. multiple sessions of a single subject. There is an option to either
do averaging weighted by the number of trials in each file (suitable for averaging accross sessions
within a subject) or do unweighted averaging (suitable for averaging accross subjects).

You will need to specify the name of the output file.

12.8.8 Merge: spm_eeg_merge

Merging several MEEG files can be useful for concatenating multiple sessions of a single subject.
Another use is to merge files and then use the display tool on the concatenated file to be able to
display in the same graph data coming from different files. This is the preferred way in SPM to
display data together that is split up into several files. The merged file will be written into the
same directory as the first selected file. The prepended output letter is ’c’.

You should specify what to do with condition labels. The simplest option is to keep them the
same. This might be useful for instance when you have several sessions for one subject with the
same conditions in all files. In other cases, however, it might be helpful to rename the conditions
like “condition A” to something like “condition A, session 17, etc. The simplest way to do it is
to append the name of the original file to the condition labels. There is also a possibility to
specify more sophisticated 'recoding rules’ (see the documentation in the function header). This
is mostly useful for writing scripts.
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The function will first check whether there are at least two files, and whether all data are
consistent with each other, i.e., have the same number of channels, time points, and sampling
rate.

12.8.9 Multimodal fusion: spm_eeg_fuse

SPM supports datasets containing simultaneously recorded MEG and EEG. For imaging source
reconstruction it is possible to use both modalities to inform the source solution. Usually combined
MEG/EEG data is contained within the same raw dataset and can be pre-processed together from
the beginning. If this is not the case spm_eeg_fuse makes it possible to combine two datasets
with different channels into a single dataset given that the sets of channels do not overlap and the
datasets are identical in the other dimensions (i.e. have the same sampling rate and time axis,
the same number of trials and the same condition labels in the same order). This function can
be used to create a multimodal dataset also from separately recorded MEG and EEG which is a
valid thing to do in the case an experiment with highly reproducible ERP/ERF.

12.8.10 Cropping: spm_eeg_crop

The 'Crop’ function can be used to remove part of the data, particularly the edges of trials. This
is useful if the trials were originally made longer than necessary to absorb edge artefacts like
filter ringing and at a later stage of processing the padding can be removed. It is also possible to
remove frequencies and channels.

12.8.11 Combine planar: spm_eeg_combineplanar

This functionality is specific to MEG systems with planar gradiometers (of which most common
is the Neuromag system). It can also be applied to MEG datasets converted to synthetic planar
gradient. Planar gradiometers come in pairs corresponding to two directions of the magnetic field
in a plain parallel to the head surface. To interpret the data from this sensors it is convenient to
combine them. This can be done for data in the time domain, in which case RMS is computed
or time-frequency data in which case the data for the two directions are summed. Note that it
is important to put the ’Combine planar’ step in the right place in the pipeline. For instance
it would not make sense to filter the combined planar data, so filtering must be done first. For
time-frequency case the ’‘Combine planar’ step would usually preceed the rescaling step. Note also
that combining planar channels is a nonlinear step so these channels cannot be used for source
reconstruction or DCM.

You should choose whether to replace the original planar channels with combined, add them
in addition to the original ones, replace all MEG channels with combined planar or only keep
combined planar and discard all others.

12.8.12 Data reduction: spm_eeg_reduce

This function can be used to reduce data dimensionality by projecting the data on a small number
of spatial components (e.g. PCA). This is an extendable function where new reduction methods
can be added.

12.8.13 Time-frequency decomposition: spm_eeg_tf

The time-frequency decomposition is extendable and can automatically detect and use plugin
functions that implement particular spectral estimation algorithms. Algorithms presently imple-
mented include continuous Morlet wavelet transform, Hilbert transorm and multitaper spectral
estimation. The result is written to one or two result files, one containing the instantaneous
power and the other, optionally written, the phase estimates (phase estimation is not possible for
all algorithms). One can select the channels and frequencies for which power and phase should
be estimated. For power, the prepended output letters are tf , for phase tph_.
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12.8.14 Rescaling and baseline correction of time-frequency: spm_eeg_tf_rescale

Usually raw event-related power is not the most informative thing to look at (although contrasts
of raw power between conditions can be informative). To see the event-related effects better the
power should be either transformed or baseline-corrected separately for each frequency. There
are several different ways to do this and they are implemented in spm_eeg_tf_rescale function.
"LogR’ method first computes the log of power and then baseline-corrects and scales the result
to produce values in dB. 'Diff” just does simple baseline subtraction. 'Rel’ expresses the power
in % of the baseline units. Finally 'Log’ and ’Sqrt’ options just compute the respective functions
without baseline-correction. If necessary, you will need to specify the baseline period. Optionally
the baseline can come from a different dataset. This can be useful e.g. to baseline correct
response-locked data using a pre-stimulus baseline.

12.8.15 Averaging over time or frequency: spm_eeg_avgtime, spm_eeg_avgfreq

These functions can be used to average time-frequency data over time or frequency and save the
results as M/EEG datasets. This is useful when subsequently additional processing steps need to
be carried out (e.g. rescaling).

12.8.16 Averaging: spm_eeg_average

Averaging of single trial data is the crucial step to obtain the evoked or induced response. When
averaging single trial data, single trials are averaged within condition. The prepended output
letter is 'm”.

Optionally you can use robust averaging for your data. This approach estimates weights, lying
between 0 and 1, that indicate how artefactual a particular sample in a trial is. Later on, when
averaging to produce evoked responses, each sample is weighted by this number. For example,
if the weight of a sample is close to zero, it doesn’t have much influence in the average, and is
effectively treated like an artefact.If you choose robust averaging, you will be given an option
to save the weights as a separate dataset which is useful for finding out what parts od the data
were downweighted and adjusting the parameters if necessary. Then you should choose whether
to compute the weights by condition (as opposed to for all the trials pooled together). When
there are approximately equal numbers of trials in each condition, it is probably safer to compute
weights across all conditions, so as not to introduce artifactual differences between conditions.
However, if one condition has fewer trials than the others, it is likely to be safer to estimate
the weights separately for each condition, otherwise evoked responses in the rarer condition will
be downweighted so as to become more similar to the more common condition(s). Finally, you
will have to choose an offset for the weighting function. This value, default value 3, defines the
weighting function used for averaging the data. The value 3 will roughly preserve 95% of data
points drawn randomly from a Gaussian distribution. Robust averaging can be applied to either
time or time-frequency data. In the case of time data if you applied a low-pass filter before
averaging it is advised to apply it again after averaging because differential weighting of adjacent
points may re-introduce high-frequencies into the data.

For phase data it is possible to compute phase-locking value (a.k.a. inter-trial coherence)
instead of averaging the phase.

12.8.17 Contrast over epochs: spm_eeg_contrast

As an extension to the averaging functionality, SPM can also be used to compute linear combi-
nations of single trials or evoked responses. For example, if you want to compute the difference
between two evoked responses, you supply a contrast vector of [—1;1]. Similarly, if you want to
remove some trials from the file, you can do this by using a contrast vector like [1; 0] which would
write a new file with only the first evoked response. The prepended output letter is "w’.

For each contrast, you have to enter a label and a vector of weights of the same length as
the number of trial types in the file. Note that SPM will zero-pad this vector if you specify
fewer contrast weights than you have trials. You also need to decide whether to “Weight by
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replications”. This is important when you use this function on single trials, where, typically,
you have a different number of trials for each trial type. If you then choose to average over
multiple trials, this option allows you to choose whether you want to form an average that is
weighted by the number of measurements within each trial type. The ’yes’ choice is useful when
combining multiple conditions into one. The 'no’ choice is useful when computing differences
between responses.

12.8.18 Copy: spm_eeg_copy

This function makes it possible to make a copy of a dataset. It won’t work just to copy and
rename the files because the name of the data file is stored in the header file and this should be
updated. You will be asked to specify the new dataset name.

12.8.19 Remove bad trials: spm_eeg_remove_bad_trials

This function physically removes trials marked as bad from a dataset. This can be useful, for
instance, before time-frequency computation as processing bad trials generates a lot of overhead.
Also under any other circumstances when it is necessary to remove trials from a dataset (for
instance to get rid of some unused condition) these trials can be first marked as bad and then
removed using this function.

12.9 Displaying data with SPM M /EEG REVIEW

This tool can be called from the main SPM GUI under “Display” — M/EEG.

SPM M/EEG REVIEW is meant to provide the user with basic visualization (data and source
reconstruction) and reviewing (e.g. trial and sensor good/bad status) tools.

When called, SPM M/EEG REVIEW displays in the SPM graphics window information about
the SPM data file which is displayed (only for MATLAB versions > 7.4).

SPM M/EEG REVIEW uses tabs to easily access different fields in the SPM data file structure
(see relevant SPM manual section for SPM EEG data format). The main tabs system, at the top
of the graphics windows, offers the following alternatives:

e EEG displays EEG type data (if any). These are the data associated with “EEG” sensors.
The content of this tab is described below, as well as the “MEG” and “OTHER” tabs.

e MEG displays MEG type data (if any).

e MPLANAR displays MEG data from planar gradiometers (if any).

e MCOMB displays RMS MEG data from combined planar gradiometers (if any).
e OTHER displays any other type of data (e.g. HEOG, VEOG, etc).

e info (active tab by default): displays basic information about the data file. This tab
contains three further sub-tabs®: “channels”, “trials” and “inv” (the latter shows source
reconstructions parameters, if any). Some of this info can be changed by the user (e.g.
sensor/trial® type, label and status, etc) by editing the table. The changes become effective
when clicking on “update”. They are actually saved in the data file when clicking on “SAVE”.

e source displays source reconstructions (if any). See below (2- source reconstructions visu-
alization).

In addition, the user can call the SPM PREPARE routine ® or save any modification in the

data file using the top-right buttons “Prepare SPM file” and “SAVE”.

4Users can also check sensor coregistration when clicking on “sensor positions”.

5Sensor/trial status (good/bad) can also be changed under the EEG/MEG/OTHER tabs, when visualizing
trials (sensor: right-click uicontextmenu ; trials: button 10).

6This is part of the SPM EEG preprocessing tools. It mainly concerns the coregistration of the sensors onto
the normalized SPM space. See relevant section in the SPM manual.
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12.9.1 Data visualization

The graphics window of SPM REVIEW offers two modes of data visualization: “scalp” and “stan-
dard” (default). For continuous (non-epoched) data, only “standard” mode is enabled. For time-
frequency data, only “scalp” mode is enabled. For any other type of data, the user can switch to
any of these modes using the standard/scalp radio button. These two modes are described below:

e standard channels are displayed vertically, within the same axes. A channel uicontextmenu
can be accessed by right clicking on any time series (e.g. for changing the channel good/bad
status). An additional axis (bottom right) provides the user with the temporal and horizon-
tal scale of the displayed data). The size of the plotted time window can be changed using
the top left buttons 1 and 2. User can scroll through the data using the temporal slider, at
the bottom of the graphics window. A global display scaling factor can be changed using
the top buttons 3 and 4. Zooming within the data is done by clicking on button 5. Clicking
on button 6 displays a 2D scalp projection of the data.

When displaying epoched data, the user can select the trial within the list of accessible
trials (top right of the window). It is also possible to switch the status of trials (good/bad)
by clicking on button 10.

When displaying continuous data, SPM M/EEG REVIEW allows the user to manage events
and selections. After having clicked on button 7, the user is asked to add a new event in
the data file, by specifying its temporal bounds (two mouse clicks within the display axes).
Basic properties of any events can be accessed either in the “info” table, or by right-clicking
on the event marker (vertical line or patch superimposed on the displayed data). This gives
access to the event uicontextmenu (e.g. for changing the event label). Buttons 8 and 9
allow the user to scroll through the data from marker to marker (backward and forward in
time).

e scalp channels are displayed vertically, within the same axes. A channel uicontextmenu can
be accessed by right clicking on any time series (e.g. for changing the channel good /bad sta-
tus). An additional axis (bottom right) provides the user with the temporal and horizontal
scale of the displayed data). The size of the plotted time window can be changed using the
top left buttons 1 and 2. User can scroll through the data using the temporal slider, at the
bottom of the graphics window. A global display scaling factor can be changed using the
top buttons 3 and 4. Zooming within the data is done by clicking on button 5. Clicking on
button 6 displays a 2D scalp projection of the data.

When displaying epoched data, the user can select the trial within the list of accessible
trials (top right of the window). It is also possible to switch the status of trials (good/bad)
by clicking on button 10.

12.9.2 Source reconstructions visualization

SPM M/EEG REVIEW makes use of sub tabs for any source reconstruction that has been stored in
the data file”. Since these reconstructions are associated with epoched data, the user can choose
the trial he/she wants to display using the list of accessible events (top of the main tab). Each
sub tab has a label given by the corresponding source reconstruction comment which is specified
by the user when source reconstructing the data (see relevant section in the SPM manual).
The bottom-left part of each sub tab displays basic infos about the source reconstruction (date,
number of included dipoles, number of temporal modes, etc). The top part of the window displays
a rendering of the reconstruction on the cortical surface that has been used. User can scroll
through peri-stimulus time by using the temporal slider below the rendered surface. Other sliders
allow the user to (i) change the transparency of the surface (left slider) and (ii) threshold the
colormap (right sliders). In the center, a butterfly plot of the reconstructed intensity of cortical
source activity over peri-stimulus time is displayed. If the data file contains more than one source
reconstruction, the bottom-right part of the window displays a bar graph of the model evidences
of each source reconstruction. This provides the user with a wvisual Bayesian model comparison

"This concerns any distributed source reconstruction, i.e. also includes imaging DCM analyses, but not ECD
reconstructions (so far).
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Figure 12.1: SPM M/EEG REVIEW buttons legend 1-2: increase/decrease width of plotted time
window, 3-4: increase/decrease global scaling display factor, 5: zoom in, 7: add event, 8-9: scroll
backward/forward data from marker to marker, 10: declare event as good/bad

tool®. SPM M/EEG REVIEW allows quick and easy switching between different models and trials,
for a visual comparison of cortical source activities.

12.9.3 Script generation

Another way of batching jobs is by using scripts, written in MATLAB . You can generate these
scripts automatically. To do this, you first have to analyze one data set using the GUI or batch
system. Whenever a preprocessing function is called, all the input arguments, once they have
been assembled by the GUI, are stored in a “history”. This history can then be used to not only
see in detail which functions have been used on a data set, but also to generate a script that
repeats the same analysis steps. The big difference is that, this time, no more GUI interactions
are necessary because the script already has all the input arguments which you gave during the
first run. The history of an meeg object can be accessed by D.history.

To generate a script from the history of an SPM MEEG file, open the file in the M/EEG REVIEW
facility and select the info tab: a history tab is then available that will display all the history
of the file. Clicking the SAVE AS SCRIPT button will ask for the filename of the MATLAB script
to save and the list of processing steps to save (default is all but it is possible to select only a
subset of them). This will generate a script, which, when run, repeats the analysis. The script
can also be obtained by directly calling the function spm_eeg_history.

Of course, this script can not only be used to repeat an analysis, but the script can also be
seen as a template that can be re-used for other analyses. One needs minimal MATLAB knowl-
edge for these changes. For example, you can replace the filenames to preprocess a different
subject. Or you can change parameters and then re-run the analysis. We have prepared an
example, using the same example data set, as in the previous subsection to demonstrate this (see
the file man\example_scripts\history_subjectl.m). With a script, you could also use object
methods directly, e.g. add a line like D=badchannels(D, 23, 1), which flags channel 23 as bad
(see also our example script after the filtering step). To run the example script on your computer,
you need the data set that you can download from the SPM webpage (7).

8Remember that model evidences p(y|m) can only be compared for the same data. Therefore, if the source
reconstructions have different time windows, filters, number of temporal modes, etc., the comparison does not
hold. This is why basic information (bottom-left part of the window) has to be recalled when comparing models.
mttp://www.fil.ion.ucl.ac.uk/spm/data/eeg_mmn/
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Chapter 13

Analysis in sensor space

This chapter describes how to perform statistical analyses of EEG/MEG data. This requires
transforming data from SPM M/EEG format to image files (NIfTT format). Once the data are in
image format the analyses for M/EEG are procedurally identical to 2nd level analyses for {MRI.
We therefore refer the reader to the fMRI section for further details of this last step.

In the drop down “Images” menu, select the function Convert to images. This will open the
batch tool for conversion to images. You will need to select the input dataset, that can be either
a mat-file on disk or a dependency from a previous processing step.

Then you need to set the 'mode’ of conversion. M/EEG data in general case can be up to
5-dimensional (3 spatial dimensions, time and frequency). SPM statistical machinery can only
handle up to 3 dimensions. Although this is a purely implementational limitation and the the-
ory behind SPM methods can be extended to any dimensionality, in practice high-dimensional
statistical results can be very hard to interpret not least due to our inability as humans to vi-
sualise them. Furthermore, unconstrained high-dimensional test would incur very severe penalty
for multiple comparisons and should in most case be avoided. Thus, our purpose is to reduce our
data dimensionality to be 3 or less. The three spatial dimensions in which the sensors reside can
be reduced to two by projecting their locations onto a plane. Further reduction of dimensionality
will involve averaging over one of the dimensions. The choices for 'mode’ option correspond to
all the different possibilities to average over a subset of data timensions. Some of the options are
only relevant for time-frequency data where the frequency dimension is present.

"Conditions’ options makes it possible to only convert data for a subset of conditions in the file.
This is especially useful for batch pipeline building. The conversion module outputs as a depen-
dency a list of all the generated NIfTT images. These can be used as input to subsequent steps
(e.g. statistical design specification). By including the ’Convert2images’ module several times
in batch each condition can have a separate dependency and enter in a different place in the
statistical design (e.g. for two-sample t-test between two groups of trials).

The ’Channels’ option makes it possible to select a subset of channels for conversions. These can
be either selected by modality (e.g. "EEG’) or chosen by name of by a list in a mat-file (e.g. to
average over all occipital channels).

"Time window’ and ’Frequency window’ options limit the data range for conversion which is es-
pecially important if the data are averaged over this range. Make sure you only include the range
of interest.

Finally the 'Directory prefix’ option specifies the prefix for the directory where images will be
written out. This is important if several different groups of images are generated from the same
dataset (e.g. from different modalities or different channel groups).

13.0.4 Output

When running the tool a direcory will be created at the dataset location. Its name will be the
name of the dataset with the specified prefix. In this directory there will be a nii-file for each
condition. In the case of averaged dataset these will be 3D images (where some dimensions can
have size of 1). In the case of an epoched dataset there will be 4D-NIfTT images where every
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frame will contain a trial.

Averaging over time or frequency

Although 2D scalp images averaged over time or frequency dimension can be created directly in
conversion to images, they can also be generated by averaging over part of the Z dimension of
previously created 3D images. This is done via 'Collapse time’ tool in the 'Images’ menu.

Masking

When you set up your statistical analysis, it might be useful to use an explicit mask to limit your
analysis to a fixed time window of interest. Such a mask can be created by selecting Mask images
from “Images” dropdown menu. You will be asked to provide one unsmoothed image to be used
as a template for the mask. This can be any of the images you exported. Then you will be asked
to specify the time (or frequency) window of interest and the name for the output mask file. This
file can then enter in your statistical design under the 'Explicit mask’ option or when pressing the
’small volume’ button in the 'Results’ GUI and choosing the 'image’ option to specify the volume.

13.0.5 Smoothing

The images generated from M/EEG data must be smoothed prior to second level analysis using
the SMOOTH IMAGES function in the drop down “Images” menu. Smoothing is necessary to ac-
commodate spatial/temporal variability between subjects and make the images better conform to
the assumptions of random field theory. The dimensions of the smoothing kernel are specified in
the units of the original data (e.g. [mm mm ms| for space-time, [Hz ms| for time-frequency). The
general guiding principle for deciding how much to smooth is the matched filter idea, which says
that the smoothing kernel should match the data feature one wants to enhance. Therefore, the
spatial extent of the smoothing kernel should be more or less similar to the extent of the dipolar
patterns that you are looking for (probably something of the order of magnitude of several cm).
In practice you can try to smooth the images with different kernels designed according to the
principle above and see what looks best. Smoothing in time dimension is not always necessary
as filtering the data has the same effect. For scalp images you should set the 'Implicit masking’
option to ’yes’ in order to keep excluding the areas outside the scalp from the analysis.

Once the images have been smoothed one can proceed to the second level analysis.



Chapter 14

3D source reconstruction: Imaging
approach

This chapter describes an Imaging approach to 3D source reconstruction.

14.1 Introduction

This chapter focuses on the imaging (or distributed) method for implementing EEG/MEG source
reconstruction in SPM. This approach results in a spatial projection of sensor data into (3D) brain
space and considers brain activity as comprising a very large number of dipolar sources spread
over the cortical sheet, with fixed locations and orientations. This renders the observation model
linear, the unknown variables being the source amplitudes or power.

Given epoched and preprocessed data (see chapter 12), the evoked and/or induced activity
for each dipolar source can be estimated, for a single time-sample or a wider peristimulus time
window.

The obtained reconstructed activity is in 3D voxel space and can be further analyzed using
mass-univariate analysis in SPM.

Contrary to PET/fMRI data reconstruction, EEG/MEG source reconstruction is a non trivial
operation. Often compared to estimating a body shape from its shadow, inferring brain activity
from scalp data is mathematically ill-posed and requires prior information such as anatomical,
functional or mathematical constraints to isolate a unique and most probable solution [11].

Distributed linear models have been around for several decades now [21] and the proposed
pipeline in SPM for an imaging solution is classical and very similar to common approaches in
the field. However, at least two aspects are quite original and should be emphasized here:

e Based on an empirical Bayesian formalism, the inversion is meant to be generic in the sense
it can incorporate and estimate the relevance of multiple constraints of varied nature; data-
driven relevance estimation being made possible through Bayesian model comparison [41,

, 72, 35].

e The subject’s specific anatomy is incorporated in the generative model of the data, in a
fashion that eschews individual cortical surface extraction. The individual cortical mesh
is obtained automatically from a canonical mesh in MNI space, providing a simple and
efficient way of reporting results in stereotactic coordinates.

The EEG/MEG imaging pipeline is divided into four consecutive steps which characterize
any inverse procedure with an additional step of summarizing the results. In this chapter, we go
through each of the steps that need completing when proceeding with a full inverse analysis:

1. Source space modeling,
2. Data co-registration,

3. Forward computation,
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4. Inverse reconstruction.

5. Summarizing the results of inverse reconstruction as an image.

Whereas the first three steps are part of the whole generative model, the inverse reconstruc-
tion step consists in Bayesian inversion, and is the only step involving actual EEG/MEG data.

14.2 Getting started

Everything which is described hereafter is accessible from the SPM user-interface by choosing
the “EEG” application, 3D Source Reconstruction button. When you press this button a new
window will appear with a GUI that will guide you through the necessary steps to obtain an
imaging reconstruction of your data. At each step, the buttons that are not yet relevant for this
step will be disabled. When you open the window the only two buttons you can press are Load
which enables you to load a pre-processed SPM MEEG dataset and the Group inversion button
that will be described below. You can load a dataset which is either epoched with single trials
for different conditions, averaged with one event related potential (ERP) per condition, or grand-
averaged. An important pre-condition for loading a dataset is that it should contain sensors and
fiducials. This will be checked when you load a file and loading will fail in case of a problem.
You should make sure that for each modality present in the dataset as indicated by channel
types (either EEG or MEG) there is a sensor description. If, for instance, you have an MEG
dataset with some EEG channels that you don’t actually want to use for source reconstruction,
change their type to “LFP” or “Other” before trying to load the dataset (the difference is that
LFP channels will stil be filtered and available for artefact detection whereas Other channels
won’t). MEG datasets converted by SPM from their raw formats will always contain sensor and
fiducial descriptions. In the case of EEG for some supported channel setups (such as extended
10-20 or BioSemi) SPM will provide default channel locations and fiducials that you can use for
your reconstruction. Sensor and fiducial descriptions can be modified using the Prepare interface
and in this interface you can also verify that these descriptions are sensible by performing a
coregistration (see chapter 12 and also below for more details about coregistration).

When you successfully load a dataset you are asked to give a name to the present analysis
cell. In SPM it is possible to perform multiple reconstructions of the same dataset with different
parameters. The results of these reconstructions will be stored with the dataset if you press
the Save button. They can be loaded and reviewed again using the 3D GUI and also with the
SPM EEG REVIEW tool. From the command line you can access source reconstruction results
via the D.inv field of the meeg object. This field (if present) is a cell array of structures and
does not require methods to access and modify it. Each cell contains the results of a different
reconstruction. In the GUI you can navigate between these cells using the buttons in the second
row. You can also create, delete and clear cells. The label you input at the beginning will be
attached to the cell for you to identify it.

14.3 Source space modeling

After entering the label you will see the Template and MRI button enabled. The MRI button will
create individual head meshes describing the boundaries of different head compartments based
on the subject’s structural scan. SPM will ask for the subject’s structural image. It might take
some time to prepare the model as the image needs to be segmented. The individual meshes
are generated by applying the inverse of the deformation field needed to normalize the individual
structural image to MNI template to canonical meshes derived from this template. This method
is more robust than deriving the meshes from the structural image directly and can work even
when the quality of the individual structural images is low.

Presently we recommend the Template button for EEG and a head model based on an in-
dividual structural scan for MEG. In the absence of individual structural scan combining the
template head model with the individual headshape also results in a quite precise head model.
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The Template button uses SPM’s template head model based on the MNI brain. The correspond-
ing structural image can be found under canonical\single_subj_T1.nii in the SPM directory.
When you use the template, different things will happen depending on whether your data is EEG
or MEG. For EEG, your electrode positions will be transformed to match the template head. So
even if your subject’s head is quite different from the template, you should be able to get good
results. For MEG, the template head will be transformed to match the fiducials and headshape
that come with the MEG data. In this case having a headshape measurement can be quite helpful
in providing SPM with more data to scale the head correctly. From the user’s perspective the
two options will look quite similar.

No matter whether the MRI or Template button was used the cortical mesh, which describes
the locations of possible sources of EEG and MEG signal, is obtained from a template mesh.
In the case of EEG the mesh is used as is, and in the case of MEG it is transformed with the
head model. Three cortical mesh sizes are available “coarse”, “normal” and "fine” (5124, 8196
and 20484 vertices respectively). It is advised to work with the "normal” mesh. Choose "coarse”
if your computer has difficulties handling the "normal” option. "Fine” will only work on 64-bit
systems and is probably an overkill.

14.4 Coregistration

In order for SPM to provide a meaningful interpretation of the results of source reconstruction,
it should link the coordinate system in which sensor positions are originally represented to the
coordinate system of a structural MRI image (MNI coordinates). In general, to link between two
coordinate systems you will need a set of at least 3 points whose coordinates are known in both
systems. This is a kind of Rosetta stone that can be used to convert a position of any point from
one system to the other. These points are called “fiducials” and the process of providing SPM with
all the necessary information to create the Rosetta stone for your data is called “coregistration”.

There are two possible ways of coregistrating the EEG/MEG data into the structural MRI
space.

1. A Landmark based coregistration (using fiducials only).
The rigid transformation matrices (Rotation and Translation) are computed such that they
match each fiducial in the EEG/MEG space into the corresponding one in sMRI space. The
same transformation is then applied to the sensor positions.

2. Surface matching (between some headshape in MEG/EEG space and some sMRI derived
scalp tesselation).
For EEG, the sensor locations can be used instead of the headshape. For MEG, the head-
shape is first coregistrated into sSMRI space; the inverse transformation is then applied to
the head model and the mesh.
Surface matching is performed using an Iterative Closest Point algorithm (ICP). The ICP
algorithm [12] is an iterative alignment algorithm that works in three phases:

e Establish correspondence between pairs of features in the two structures that are to
be aligned based on proximity;

e Estimate the rigid transformation that best maps the first member of the pair onto
the second;

e Apply that transformation to all features in the first structure. These three steps are
then reapplied until convergence is concluded. Although simple, the algorithm works
quite effectively when given a good initial estimate.

In practice what you will need to do after pressing the Coregister button is to specify the
points in the sMRI image that correspond to your M/EEG fiducials. If you have more fiducials
(which may happen for EEG as in principle any electrode can be used as a fiducial), you will be
ask at the first step to select the fiducials you want to use. You can select more than 3, but not
less. Then for each M/EEG fiducial you selected you will be asked to specify the corresponding
position in the sMRI image in one of 3 ways.
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e select - locations of some points such as the commonly used nasion and preauricular points
and also CTF recommended fiducials for MEG (as used at the FIL) are hard-coded in SPM.
If your fiducial corresponds to one of these points you can select this option and then select
the correct point from a list.

e type - here you can enter the MNI coordinates for your fiducial (1 x 3 vector). If your
fiducial is not on SPM’s hard-coded list, it is advised to carefully find the right point on
either the template image or on your subject’s own image normalized to the template. You
can do it by just opening the image using SPM’s Display /images functionality. You can
then record the MNI coordinates and use them in all coregistrations you need to do using
the “type” option.

e click - here you will be presented with a structural image where you can click on the right
point. This option is good for “quick and dirty” coregistration or to try out different options.

You will also have the option to skip the current fiducial, but remember you can only do it if
you eventually specify more than 3 fiducials in total. Otherwise the coregistration will fail.

After you specify the fiducials you will be asked whether to use the headshape points if they
are available. For EEG it is advised to always answer “yes”. For MEG if you use a head model
based on the subject’s sMRI and have precise information about the 3 fiducials (for instance by
doing a scan with fiducials marked by vitamin E capsules) using the headshape might actually
do more harm than good. In other cases it will probably help, as in EEG.

The results of coregistration will be presented in SPM’s graphics window. It is important
to examine the results carefully before proceeding. In the top plot you will see the scalp, the
inner skull and the cortical mesh with the sensors and the fiducials. For EEG make sure that the
sensors are on the scalp surface. For MEG check that the head positon in relation to the sensors
makes sense and the head does not for instance stick outside the sensor array. In the bottom plot
the sensor labels will be shown in topographical array. Check that the top labels correspond to
anterior sensors, bottom to posterior, left to left and right to right and also that the labels are
where you would expect them to be topographically.

14.5 Forward computation (forward)

This refers to computing for each of the dipoles on the cortical mesh the effect it would have on
the sensors. The result is a N x M matrix where N is the number of sensors and M is the number
of mesh vertices (that you chose from several options at a previous step). This matrix can be
quite big and it is, therefore, not stored in the header, but in a separate *.mat file which has
SPMgainmatrix in its name and is written in the same directory as the dataset. Each column in
this matrix is a so called “lead field” corresponding to one mesh vertex.

The lead fields are computed using the “forwinv”’ toolbox!' developed by Robert Oostenveld,
which SPM shares with FieldTrip. This computation is based on Maxwell’s equations and makes
assumptions about the physical properties of the head. There are different ways to specify these
assumptions which are known as “forward models”.

The “forwinv” toolbox can support different kinds of forward models. When you press Forward
Model button (which should be enabled after successful coregistration), you will have a choice of
several head models depending on the modality of your dataset. We presently recommend useing
a single shell model for MEG and “EEG BEM” for EEG. You can also try other options and
compare them using model evidence (see below). The first time you use the EEG BEM option
with a new structural image (and also the first time you use the Template option) a lengthy
computation will take place that prepares the BEM model based on the head meshes. The BEM
will then be saved in a quite large *.mat file with ending _EEG_BEM.mat in the same directory
with the structural image (“canonical” subdirectory of SPM for the template). When the head
model is ready, it will be displayed in the graphics window with the cortical mesh and sensor
locations you should verify for the final time that everything fits well together.

The actual lead field matrix will be computed at the beginning of the next step and saved.
This is a time-consuming step and it takes longer for high-resolution meshes. The lead field file

Lforwinv: http://fieldtrip.fcdonders.nl/development/forwinv
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will be used for all subsequent inversions if you do not change the coregistration and the forward
model.

14.6 Inverse reconstruction

To get started press the Invert button. The first choice you will see is between Imaging, VB-ECD
and DCM. For reconstruction based on an empirical Bayesian approach to localize either the evoked
response, the evoked power or the induced power, as measured by EEG or MEG press the Imaging
button. The other options are explained in greater detail elsewhere.

If you have trials belonging to more than one condition in your dataset then the next choice you
will have is whether to invert all the conditions together or to choose a subset. It is recommended
to invert the conditions together if you are planning to later do a statistical comparison between
them. If you have only one condition, or after choosing the conditions, you will get a choice
between “Standard” and “Custom” inversion. If you choose “Standard” inversion, SPM will start
the computation with default settings. These correspond to the multiple sparse priors (MSP)
algorithm [33] which is then applied to the whole input data segment.

If you want to fine-tune the parameters of the inversion, choose the “Custom” option. You will
then have the possibility to choose between several types of inversion differing by their hyperprior
models (IID - equivalent to classical minimum norm, COH - smoothness prior similar to methods
such as LORETA) or the MSP method .

You can then choose the time window that will be available for inversion. Based on our
experience, it is recommended to limit the time window to the activity of interest in cases when
the amplitude of this activity is low compared to activity at other times. The reason is that
if the irrelevant high-amplitude activity is included, the source reconstruction scheme will focus
on reducing the error for reconstructing this activity and might ignore the activity of interest.
In other cases, when the peak of interest is the strongest peak or is comparable to other peaks
in its amplitude, it might be better not to limit the time window to let the algorithm model
all the brain sources generating the response and then to focus on the sources of interest using
the appropriate contrast (see below). There is also an option to apply a hanning taper to the
channel time series in order to downweight the possible baseline noise at the beginning and end
of the trial. There is also an option to pre-filter the data. Finally, you can restrict solutions to
particular brain areas by loading a *.mat file with a K x 3 matrix containing MNI coordinates
of the areas of interest. This option may initially seem strange, as it may seem to overly bias
the source reconstructions returned. However, in the Bayesian inversion framework you can
compare different inversions of the same data using Bayesian model comparison. By limiting the
solutions to particular brain areas you greatly simplify your model and if that simplification really
captures the sources generating the response, then the restricted model will have much higher
model evidence than the unrestricted one. If, however, the sources you suggested cannot account
for the data, the restriction will result in a worse model fit and depending on how much worse it is,
the unrestricted model might be better in the comparison. So using this option with subsequent
model comparison is a way, for instance, to integrate prior knowledge from the literature or from
fMRI/PET/DTTI into your inversion. It also allows for comparison of alternative prior models.

Note that for model comparison to be valid all the settings that affect the input data, like the
time window, conditions used and filtering should be identical.

SPM imaging source reconstruction also supports multi-modal datasets. These are datasets
that have both EEG and MEG data from a simultaneous recording. Datasets from the "Neu-
romag’ MEG system which has two kinds of MEG sensors are also treated as multimodal. If
your dataset is multimodal a dialogue box will appear asking to select the modalities for source
reconstruction from a list. If you select more than one modality, multiomodal fusion will be
performed. This option based on the paper by Henson et al. [51] uses a heuristic to rescale the
data from different modalities so that they can be used together.

Once the inversion is completed you will see the time course of the region with maximal
activity in the top plot of the graphics window. The bottom plot will show the maximal intensity
projection (MIP) at the time of the maximal activation. You will also see the log-evidence value
that can be used for model comparison, as explained above. Note that not all the output of the
inversion is displayed. The full output consists of time courses for all the sources and conditions
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for the entire time window. You can view more of the results using the controls in the bottom
right corner of the 3D GUI. These allow focusing on a particular time, brain area and condition.
One can also display a movie of the evolution of neuronal activity.

14.7 Summarizing the results of inverse reconstruction as an
image

SPM offers the possibility of writing the results as 3D NIfTT images, so that you can then proceed
with GLM-based statistical analysis using Random Field theory. This is similar to the 2nd level
analysis in fMRI for making inferences about region and trial-specific effects (at the between
subject level).

This entails summarizing the trial- and subject-specific responses with a single 3-D image in
source space. Critically this involves prompting for a time-frequency contrast window to create
each contrast image. This is a flexible and generic way of specifying the data feature you want
to make an inference about (e.g., gamma activity around 300 ms or average response between
80 and 120 ms). This kind of contrast is specified by pressing the Window button. You will then
be asked about the time window of interest (in ms, peri-stimulus time). It is possible to specify
one or more time segments (separated by a semicolon). To specify a single time point repeat the
same value twice. The next question is about the frequency band. If you just want to average
the source time course leave that at the default, zero. In this case the window will be weighted
by a Gaussian. In the case of a single time point this will be a Gaussian with 8 ms full width
half maximum (FWHM). If you specify a particular frequency or a frequency band, then a series
of Morlet wavelet projectors will be generated summarizing the energy in the time window and
band of interest.

There is a difference between specifying a frequency band of interest as zero, as opposed to
specifying a wide band that covers the whole frequency range of your data. In the former case
the time course of each dipole will be averaged, weighted by a gaussian. Therefore, if within your
time window this time course changes polarity, the activity can average out and in an ideal case
even a strong response can produce a value of zero. In the latter case the power is integrated
over the whole spectrum ignoring phase, and this would be equivalent to computing the sum of
squared amplitudes in the time domain.

Finally, if the data file is epoched rather than averaged, you will have a choice between
“evoked”; “induced” and “trials”. If you have multiple trials for certain conditions, the projec-
tors generated at the previous step can either be applied to each trial and the results averaged
(induced) or applied to the averaged trials (evoked). Thus it is possible to perform localization
of induced activity that has no phase-locking to the stimulus. It is also possible to focus on
frequency content of the ERP using the “evoked” option. Clearly the results will not be the same.
The projectors you specified (bottom plot) and the resulting MIP (top plot) will be displayed
when the operation is completed. “trials” option makes it possible to export an image per trial
which might be useful for doing within-subject statistics. The images are exported as 4D-NIfTT
with one file per condition including all the trials for that condition.

The Image button is used to write out the contrast results. It is possible to export them as
either values on a mesh (GIfTI) or volumetric 3D images (NIfTT). Both formats are supported
by SPM statistical machinery. When generating an image per trial the images are exported
as 4D-NIfTT with one file per condition including all the trials for that condition. The values
of the exported images are normalized to reduce between-subject variance. Therefore, for best
results it is recommended to export images for all the time windows and conditions that will be
included in the same statistical analysis in one step. Note that the images exported from the
source reconstruction are a little peculiar because of smoothing from a 2D cortical sheet into 3D
volume. SPM statistical machinery has been optimized to deal with these peculiarities and get
sensible results. If you try to analyze the images with older versions of SPM or with a different
software package you might get different (less focal) results.
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14.8 Rendering interface

By pressing the Render button you can open a new GUI window which will show you a rendering
of the inversion results on the brain surface. You can rotate the brain, focus on different time
points, run a movie and compare the predicted and observed scalp topographies and time series.
A useful option is “virtual electrode” which allows you to extract the time course from any point
on the mesh and the MIP at the time of maximal activation at this point. Just press the button
and click anywhere in the brain.

An additional tool for reviewing the results is available in the SPM M/EEG REVIEW function.

14.9 Group inversion

A problem encountered with MSP inversion is that sometimes it is “too good”, producing solutions
that were so focal in each subject that the spatial overlap between the activated areas across
subjects was not sufficient to yield a significant result in a between-subjects contrast. This could
be improved by smoothing, but smoothing compromises the spatial resolution and thus subverts
the main advantage of using an inversion method that can produce focal solutions.

To circumvent this problem we proposed a modification of the MSP method [69] that effectively
restricts the activated sources to be the same in all subjects with only the degree of activation
allowed to vary. We showed that this modification makes it possible to obtain significance levels
close to those of non-focal methods such as minimum norm while preserving accurate spatial
localization.

The group inversion can yield much better results than individual inversions because it intro-
duces an additional constraint for the ill-posed inverse problem, namely that the responses in all
subjects should be explained by the same set of sources. Thus it should be your method of choice
when analyzing an entire study with subsequent GLM analysis of the images.

Group inversion works very similarly to what was described above. You can start it by pressing
the “Group inversion” button right after opening the 3D GUI. You will be asked to specify a list
of M/EEG data sets to invert together. Then the routine will ask you to perform coregistration
for each of the files and specify all the inversion parameters in advance. It is also possible to
specify the contrast parameters in advance. Then the inversion will proceed by computing the
inverse solution for all the files and will write out the output images. The results for each subject
will also be saved in the header of the corresponding input file. It is possible to load this file into
the 3D GUI after the inversion and explore the results as described above.

14.10 Batching source reconstruction

There is a possibility to run imaging source reconstruction using the SPM batch tool. It can be
accessed by pressing the “Batch” button in the main SPM window and then going to “M/EEG
source reconstruction” in the “SPM” under “M/EEG”. There are separate tools there for building
head models, computing the inverse solution and computing contrasts and generating images.
This makes it possible for instance to generate images for several different contrasts from the
same inversion. All the three tools support multiple datasets as inputs. In the case of the
inversion tool group inversion will be done for multiple datasets.

14.11 Appendix: Data structure

The MATLAB object describing a given EEG/MEG dataset in SPM is denoted as D. Within that
structure, each new inverse analysis will be described by a new cell of sub-structure field D.inv
and will be made of the following fields:

e method: character string indicating the method, either “ECD” or “Imaging” in present case;

e mesh: sub-structure with relevant variables and filenames for source space and head mod-
eling;
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datareg: sub-structure with relevant variables and filenames for EEG/MEG data registra-
tion into MRI space;

forward: sub-structure with relevant variables and filenames for forward computation;
inverse: sub-structure with relevant variable, filenames as well as results files;
comment: character string provided by the user to characterize the present analysis;
date: date of the last modification made to this analysis.

gainmat: name of the gain matrix file.



Chapter 15

Localization of Equivalent Current
Dipoles

This chapter describes source reconstruction based on “Variational Bayes Equivalent Current
Dipoles” (VB-ECDs). For more details about the implementation, please refer to the help and
comments in the routines themselves, as well as the original paper by [62].

15.1 Introduction

3D imaging (or distributed) reconstruction methods consider all possible source location simul-
taneously, allowing for large and widely spread clusters of activity. This is to be contrasted with
“Equivalent Current Dipolett (ECD) approaches which rely on two different hypotheses:

e only a few (say less than 5) sources are active simultaneously, and
e those sources are very focal.

This leads to the ECD model where the observed scalp potential will be explained by a handful
of discrete current sources, i.e. dipoles, located inside the brain volume.

In contrast to the 3D imaging reconstruction, the number of ECDs considered in the model,
i.e. the number of “active locationstt, should be defined a priori. This is a crucial step, as the
number of sources considered defines the ECD model. This choice should be based on empirical
knowledge of the brain activity observed or any other source of information (for example by
looking at the scalp potential distribution). In general, each dipole is described by 6 parameters:
3 for its location, 2 for its orientation and 1 for its amplitude. Once the number of ECDs is fixed,
a non-linear optimisation algorithm is used to adjust the dipoles parameters (6 times the number
of dipoles) to the observed potential.

Classical ECD approaches use a simple best fitting optimisation using “least square error”
criteria. This leads to relatively simple algorithms but presents a few drawbacks:

e constraints on the dipoles are difficult to include in the framework;

e the noise cannot be properly taken into account, as its variance should be estimated along-
side the dipole parameters;

e it is difficult to define confidence intervals on the estimated parameters, which could lead
to over-confident interpretation of the results;

e models with different numbers of dipoles cannot be compared except through their goodness-
of-fit, which can be misleading.

As adding dipoles to a model will necessarily improve the overall goodness of fit, one could erro-
neously be tempted to use as many ECDs as possible and to perfectly fit the observed signal.
Through using Bayesian techniques, however, it is possible to circumvent all of the above limita-
tions of classical approaches.
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Briefly, a probabilistic generative model is built providing a likelihood model for the data'.
The model is completed by a set of priors on the various parameters, leading to a Bayesian model,
allowing the inclusion of user-specified prior constraints.

A “variational Bayestt (VB) scheme is then employed to estimate the posterior distribution
of the parameters through an iterative procedure. The confidence interval of the estimated pa-
rameters is therefore directly available through the estimated posterior variance of the param-
eters. Critically, in a Bayesian context, different models can be compared using their evidence
or marginal likelihood. This model comparison is superior to classical goodness-of-fit measures,
because it takes into account the complexity of the models (e.g., the number of dipoles) and,
implicitly, uncertainty about the model parameters. VB-ECD can therefore provide an objective
and accurate answer to the question: Would this data set be better modelled by 2 or 3 ECDs?

15.2 Procedure in SPM12

This section aims at describing how to use the VB-ECD approach in SPM12.

15.2.1 Head and forward model

The engine calculating the projection of the dipolar sources on the scalp electrode comes from
Fieldtrip and is the same for the 3D imaging or DCM. The head model should thus be prepared
the same way, as described in the chapter 14. For the same data set, differences between the
VB-ECD and imaging reconstructions would therefore be due to the reconstruction approach
only.

15.2.2 VB-ECD reconstruction

To get started, after loading and preparing the head model, press the Invert’ button?. The first
choice you will see is between 'Imaging’, "VB-ECD’ and 'DCM’. The ’Imaging’ reconstruction
corresponds to the imaging solution, as described in chapter 14, and 'DCM’ is described in chapter
16. Then you are invited to fill in information about the ECD model and click on buttons in the
following order:

1. indicate the time bin or time window for the reconstruction, within the epoch length. Note
that the data will be averaged over the selected time window! VB-ECD will thus always be
calculated for a single time bin.

2. enter the trial type(s) to be reconstructed. Each trial type will be reconstructed separately.

3. add a single (i.e. individual) dipole or a pair of symmetric dipoles to the model. Each
“elementtt (single or pair) is added individually to the model.

4. use “Informativett or ‘Non-informativett location priors. “Non-informativett means flat
priors over the brain volume. With “Informativett, you can enter the a priori location of
the source®.

5. use “Informativett or ‘Non-informativett moment priors. “Non-informativett means flat
priors over all possible directions and amplitude. With “Informativett, you can enter the a

priori moment of the source?.

6. go back to step 3 and add some more dipole(s) to the model, or stop adding dipoles.

IThis includes an independent and identically distributed (IID) Normal distribution for the errors, but other
distributions could be specified.

2The GUI for VB-ECD can also be launched directly from MATLAB command line with the instruction: D =
spm_eeg_inv_vbecd_gui.

3For a pair of dipoles, only the right dipole coordinates are required.

4For a pair of dipoles, only the right dipole moment is required.
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7. specify the number of iterations. These are repetitions of the fitting procedure with different
initial conditions. Since there are multiple local maxima in the objective function, multiple
iterations are necessary to get good results especially when non-informative location priors
are chosen.

The routine then proceeds with the VB optimization scheme to estimate the model parameters.
There is graphical display of the intermediate results. When the best solution is selected the
model evidence will be shown at the top of the SPM Graphics window. This number can be used
to compare solutions with different priors.

Results are finally saved into the data structure D in the field .inv{D.val}.inverse and displayed
in the graphic window.

15.2.3 Result display

The latest VB-ECD results can be displayed again through the function D = spm_eeg_inv_vbecd_disp.
If a specific reconstruction should be displayed, then use: spm_eeg_inv_vbecd_disp(’Init’,D,
ind). In the GUI you can use the *dip’ button (located under the 'Invert’ button) to display
the dipole locations.
In the upper part, the 3 main figures display the 3 orthogonal views of the brain with the dipole
location and orientation superimposed. The location confidence interval is described by the dot-
ted ellipse around the dipole location on the 3 views. It is not possible to click through the image,
as the display is automatically centred on the dipole displayed. It is possible though to zoom into
the image, using the right-click context menu.

The lower left table displays the current dipole location, orientation (Cartesian or polar coor-
dinates) and amplitude in various formats.

The lower right table allows for the selection of trial types and dipoles. Display of multiple
trial types and multiple dipoles is also possible. The display will center itself on the average
location of the dipoles.
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Chapter 16

Dynamic Causal Modelling for
M/EEG

16.1 Introduction

Dynamic Causal Modelling (DCM) is based on an idea initially developed for fMRI data: The
measured data are explained by a network model consisting of a few sources, which are interacting
dynamically. This network model is inverted using a Bayesian approach, and one can make
inferences about connections between sources, or the modulation of connections by task.

For M/EEG data, DCM is a powerful technique for inferring about parameters that one
doesn’t observe with M/EEG directly. Instead of asking 'How does the strength of the source in
left superior temporal gyrus (STG) change between condition A and B?’, one can ask questions
like "THow does the backward connection from this left STG source to left primary auditory cortex
change between condition A and B?’. In other words, one isn’t limited to questions about source
strength as estimated using a source reconstruction approach, but can test hypotheses about what
is happening between sources, in a network.

As M/EEG data is highly resolved in time, as compared to fMRI, the inferences are about
more neurobiologically plausible parameters. These relate more directly to the causes of the
underlying neuronal dynamics.

The key DCM for M/EEG methods paper appeared in 2006, and the first DCM studies
about mismatch negativity came out in 2007/2008. At its heart DCM for M/EEG is a source
reconstruction technique, and for the spatial domain we use exactly the same leadfields as other
approaches. However, what makes DCM unique, is that is combines the spatial forward model
with a biologically informed temporal forward model, describing e.g. the connectivity between
sources. This critical ingredient not only makes the source reconstruction more robust by implic-
itly constraining the spatial parameters, but also allows one to infer about connectivity.

Our methods group is continuing to work on further improvements and extensions to DCM.
In the following, we will describe the usage of DCM for evoked responses (both MEG and EEG),
DCM for induced responses (i.e., based on power data in the time-frequency domain), and DCM
for local field potentials (measured as steady-state responses). All three DCMs share the same
interface, as many of the parameters that need to be specified are the same for all three ap-
proaches. Therefore, we will first describe DCM for evoked responses, and then point out where
the differences to the other two DCMs lie.

This manual provides only a procedural guide for the practical use of DCM for M/EEG. If
you want to read more about the scientific background, the algorithms used, or how one would
typically use DCM in applications, we recommend the following reading. The two key methods
contributions can be found in [23] and [63]. Two other contributions using the model for testing
interesting hypotheses about neuronal dynamics are described in [64] and [25]. At the time of
writing, there were also three application papers published which demonstrate what kind of hy-
potheses can be tested with DCM [47, 46, 45]. Another good source of background information
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is the recent SPM book [28], where Parts 6 and 7 cover not only DCM for M/EEG but also
related research from our group. The DCMs for induced responses and steady-state responses are
covered in [18, 17] and [78, 74, 75]. Also note that there is a DCM example file, which we put onto
the webpage http://www.fil.ion.ucl.ac.uk/spm/data/eeg mmn/. After downloading DCMexam-
ple.mat, you can load (see below) this file using the DCM GUI, and have a look at the various
options, or change some, after reading the description below.

16.2 Overview

In summary, the goal of DCM is to explain measured data (such as evoked responses) as the
output of an interacting network consisting of a several areas, some of which receive input (i.e.,
the stimulus). The differences between evoked responses, measured under different conditions,
are modelled as a modulation of selected DCM parameters, e.g. cortico-cortical connections [23].
This interpretation of the evoked response makes hypotheses about connectivity directly testable.
For example, one can ask, whether the difference between two evoked responses can be explained
by top-down modulation of early areas [17]. Importantly, because model inversion is implemented
using a Bayesian approach, one can also compute Bayesian model evidences. These can be used
to compare alternative, equally plausible, models and decide which is the best [65].

DCM for evoked responses takes the spatial forward model into account. This makes DCM a
spatiotemporal model of the full data set (over channels and peri-stimulus time). Alternatively,
one can describe DCM also as a spatiotemporal source reconstruction algorithm which uses addi-
tional temporal constraints given by neural mass dynamics and long-range effective connectivity.
This is achieved by parameterising the lead-field, i.e., the spatial projection of source activity to
the sensors. In the current version, this can be done using two different approaches. The first
assumes that the leadfield of each source is modelled by a single equivalent current dipole (ECD)
[63]. The second approach posits that each source can be presented as a ’patch’ of dipoles on the
grey matter sheet [22]. This spatial model is complemented by a model of the temporal dynamics
of each source. Importantly, these dynamics not only describe how the intrinsic source dynamics
evolve over time, but also how a source reacts to external input, coming either from subcortical
areas (stimulus), or from other cortical sources.

The GUI allows one to enter all the information necessary for specifying a spatiotemporal
model for a given data set. If you want to fit multiple models, we recommend using a batch script.
An example of such a script (DCM_ERP _example), which can be adapted to your own data, can
be found in the man/example_ scripts/ folder of the distribution. You can run this script on exam-
ple data provided by via the SPM webpage (http://www.fil.ion.ucl.ac.uk/spm/data/eeg mmn/).
However, you first have to preprocess these data to produce an evoked response by going through
the preprocessing tutorial (chapter 40) or by running the history_subjectl.m script in the
example_scripts folder.

16.3 Calling DCM for ERP/ERF

After calling spm eeg, you see SPM’s graphical user interface, the top-left window. The button
for calling the DCM-GUI is found in the second partition from the top, on the right hand side.
When pressing the button, the GUI pops up. The GUI is partitioned into five parts, going from
the top to the bottom. The first part is about loading and saving existing DCMs, and selecting
the type of model. The second part is about selecting data, the third is for specification of the
spatial forward model, the fourth is for specifying connectivity, and the last row of buttons allows
you to estimate parameters and view results.

You have to select the data first and specify the model in a fixed order (data selection >
spatial model > connectivity model). This order is necessary, because there are dependencies
among the three parts that would be hard to resolve if the input could be entered in any order.
At any time, you can switch back and forth from one part to the next. Also, within each part,
you can specify information in any order you like.
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16.4 load, save, select model type

At the top of the GUI, you can load an existing DCM or save the one you are currently working
on. In general, you can save and load during model specification at any time. You can also switch
between different DCM analyses (the left menu). The default is 'ERP’ which is DCM for evoked
responses described here. Currently, the other types are cross-spectral densities (CSD), induced
responses (IND) and phase coupling (PHA) described later in this chapter. The menu on the
right-hand side lets you choose the neuronal model. "ERP’ is the standard model described in most
of our older papers, e.g. [23]. "SEP’ uses a variant of this model, however, the dynamics tend to
be faster [71]. 'NMM’ is a nonlinear neural mass model based on a first-order approximation, and
"MFM’, is also nonlinear and is based on a second-order approximation. 'NMDA' is a variant of the
'NMM’ model which also includes a model of NMDA receptor. ’"CMC’ and "CMM’ are canonical
microcircuit models [96] used in the more recent paper to link models of neurophysiological
phenomena with canonical models of cortical processing based on the idea of predictive coding.

16.5 Data and design

In this part, you select the data and model between-trial effects. The data can be either event-
related potentials or fields. These data must be in the SPM-format. On the right-hand side
you can enter trial indices of the evoked responses in this SPM-file. For example, if you want
to model the second and third evoked response contained within an SPM-file, specify indices 2
and 3. The indices correspond to the order specified by the condlist method (see 12). If the two
evoked responses, for some reason, are in different files, you have to merge these files first. You
can do this with the SPM preprocessing function merge (spm_eeg merge), see 12. You can also
choose how you want to model the experimental effects (i.e. the differences between conditions).
For example, if trial 1 is the standard and trial 2 is the deviant response in an oddball paradigm,
you can use the standard as the baseline and model the differences in the connections that are
necessary to fit the deviant. To do that type 0 1 in the text box below trial indices. Alternatively,
if you type -1 1 then the baseline will be the average of the two conditions and the same factor
will be subtracted from the baseline connection values to model the standard and added to model
the deviant. The latter option is perhaps not optimal for an oddball paradigm but might be
suitable for other paradigms where there is no clear ’'baseline condition’. When you want to
model three or more evoked responses, you can model the modulations of a connection strength
of the second and third evoked responses as two separate experimental effects relative to the first
evoked response. However, you can also choose to couple the connection strength of the first
evoked response with the two gains by imposing a linear relationship on how this connection
changes over trials. Then you can specify a single effect (e.g. -1 0 1). This can be useful when
one wants to add constraints on how connections (or other DCM parameters) change over trials.
A compelling example of this can be found in [45]. For each experimental effect you specify, you
will be able to select the connections in the model that are affected by it (see below).

Press the button ’data file’ to load the M/EEG dataset. Under ’time window (ms)’ you
have to enter the peri-stimulus times which you want to model, e.g. 1 to 200 ms.

You can choose whether you want to model the mean or drifts of the data at sensor level. Select
1 for ’detrend’ to just model the mean. Otherwise select the number of discrete cosine transform
terms you want to use to model low-frequency drifts (> 1). In DCM, we use a projection of the
data to a subspace to reduce the amount of data. The type of spatial projection is described in
[25]. You can select the number of modes you wish to keep. The default is 8.

You can also choose to window your data, along peri-stimulus time, with a hanning window
(radio button). This windowing will reduce the influence of the beginning and end of the time-
series.

If you are happy with your data selection, the projection and the detrending terms, you can
click on the > (forward) button, which will bring you to the next stage electromagnetic model.
From this part, you can press the red < button to get back to the data and design part.
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16.6 Electromagnetic model

With the present version of DCM, you have three options for how to spatially model your evoked
responses. Either you use a single equivalent current dipole (ECD) for each source, or you use a
patch on the cortical surface (IMG), or you don’t use a spatial model at all (local field potentials
(LFP)). In all three cases, you have to enter the source names (one name in one row). For ECD
and IMG, you have to specify the prior source locations (in mm in MNI coordinates). Note that
by default DCM uses uninformative priors on dipole orientations, but tight priors on locations.
This is because tight priors on locations ensure that the posterior location will not deviate to
much from its prior location. This means each dipole stays in its designated area and retains its
meaning. The prior location for each dipole can be found either by using available anatomical
knowledge or by relying on source reconstructions of comparable studies. Also note that the prior
location doesn’t need to be overly exact, because the spatial resolution of M/EEG is on a scale
of several millimeters. You can also load the prior locations from a file ("load’). You can visualize
the locations of all sources when you press ’dipoles’.

The onset-parameter determines when the stimulus, presented at 0 ms peri-stimulus time, is
assumed to activate the cortical area to which it is connected. In DCM, we usually do not model
the rather small early responses, but start modelling at the first large deflection. Because the
propagation of the stimulus impulse through the input nodes causes a delay, we found that the
default value of 60 ms onset time is a good value for many evoked responses where the first large
deflection is seen around 100 ms. However, this value is a prior, i.e., the inversion routine can
adjust it. The prior mean should be chosen according to the specific responses of interest. This is
because the time until the first large deflection is dependent on the paradigm or the modality you
are working in, e.g. audition or vision. You may also find that changing the onset prior has an
effect on how your data are fitted. This is because the onset time has strongly nonlinear effects (a
delay) on the data, which might cause differences in which maximum was found at convergence,
for different prior values. It is also possible to type several numbers in this box (identical or not)
and then there will be several inputs whose timing can be optimized separately. These inputs can
be connected to different model sources. This can be useful, for instance, for modelling a paradigm
with combined auditory and visual stimulation.The ’duration (sd)’ box makes it possible to vary
the width of the input volley, separately for each of the inputs. This can be used to model more
closely the actual input structure (e.g. a long tone or extended presentation of a visual input).
By combining several inputs with different durations one can approximate an even more complex
input waveform (e.g. speech).

When you want to proceed to the next model specification stage, hit the > (forward) button
and proceed to the neuronal model.

16.7 Neuronal model

There are five (or more) matrices which you need to specify by button presses. The first three
are the connection strength parameters for the first evoked response. There are three types of
connections, forward, backward and lateral. In each of these matrices you specify a connection
from a source area to a target area. For example, switching on the element (2, 1) in the intrinsic
forward connectivity matrix means that you specify a forward connection from area 1 to 2.
Some people find the meaning of each element slightly counter-intuitive, because the column
index corresponds to the source area, and the row index to the target area. This convention is
motivated by direct correspondence between the matrices of buttons in the GUI and connectivity
matrices in DCM equations and should be clear to anyone familiar with matrix multiplication.

The one or more inputs that you specified previously can go to any area and to multiple areas.
You can select the receiving areas by selecting area indices in the C input vector.

The B matrix contains all gain modulations of connection strengths as set in the A-matrices.
These modulations model the difference between the first and the other modelled evoked re-
sponses. For example, for two evoked responses, DCM explains the first response by using the
A-matrix only. The 2nd response is modelled by modulating these connections by the weights in
the B-matrix.
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16.8 Estimation

When you are finished with model specification, you can hit the estimate button in the lower
left corner. If this is the first estimation and you have not tried any other source reconstructions
with this file, DCM will build a spatial forward model. You can use the template head model for
quick results. DCM will now estimate model parameters. You can follow the estimation process
by observing the model fit in the output window. In the matlab command window, you will see
each iteration printed out with expected-maximization iteration number, free energy F', and the
predicted and actual change of F' following each iteration step. At convergence, DCM saves the
results in a DCM file, by default named 'DCM _ERP.mat’. You can save to a different name, eg.
if you are estimating multiple models, by pressing ’save’ at the top of the GUI and writing to a
different name.

16.9 Results

After estimation is finished, you can assess the results by choosing from the pull-down menu at
the bottom (middle).

With ERPs (mode) you can plot, for each mode, the data for both evoked responses, and the
model fit.

When you select ERPs (sources), the dynamics of each area are plotted. The activity of the
pyramidal cells (which is the reconstructed source activity) are plotted in solid lines, and the
activity of the two interneuron populations are plotted as dotted lines.

The option coupling (A) will take you to a summary about the posterior distributions of the
connections in the A-matrix. In the upper row, you see the posterior means for all intrinsic
connectivities. As above, element (i, j) corresponds to a connection from area j to i. In the
lower row, you’ll find, for each connection, the probability that its posterior mean is different
from the prior mean, taking into account the posterior variance.

With the option coupling(B) you can access the posterior means for the gain modulations of
the intrinsic connectivities and the probability that they are unequal to the prior means. If you
specified several experimental effects, you will be asked which of them you want to look at.

With coupling(C) you see a summary of the posterior distribution for the strength of the input
into the input receiving area. On the left hand side, DCM plots the posterior means for each
area. On the right hand side, you can see the corresponding probabilities.

The option Input shows you the estimated input function. As described by [23], this is a
gamma function with the addition of low-frequency terms.

With Response, you can plot the selected data, i.e. the data, selected by the spatial modes,
but back-projected into sensor space.

With Response (image), you see the same as under Results but plotted as an image in grey-
scale.

And finally, with the option Dipoles, DCM displays an overlay of each dipole on an MRI
template using the posterior means of its 3 orientation and 3 location parameters. This makes
sense only if you have selected an ECD model under electromagnetic model.

Before estimation, when you press the button ’Initialise’ you can assign parameter values as
initial starting points for the free-energy gradient ascent scheme. These values are taken from
another already estimated DCM, which you have to select.

The button BMS allows you do Bayesian model comparison of multiple models. It will open
the SPM batch tool for model selection. Specify a directory to write the output file to. For the
“Inference method” you can choose between “Fixed effects” and “Random effects” (see [91] for
additional explanations). Choose “Fixed effects” if you are not sure. Then click on “Data” and in
the box below click on “New: Subject”. Click on “Subject” and in the box below on “New: Session”.
Click on models and in the selection window that comes up select the DCM mat files for all the
models (remember the order in which you select the files as this is necessary for interpretating
the results). Then run the model comparison by pressing the green “Run” button. You will see,
at the top, a bar plot of the log-model evidences for all models. At the bottom, you will see the
probability, for each model, that it produced the data. By convention, a model can be said to
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be the best among a selection of other models, with strong evidence, if its log-model evidence
exceeds all other log-model evidences by at least 3.

16.10 Cross-spectral densities

16.10.1 Model specification

DCM for cross-spectral densities can be applied to M/EEG or intracranial data.

The top panel of the DCM for ERP window allows you to toggle through available analysis
methods. On the top left drop-down menu, select ’CSD’. The second drop-down menu in the
right of the top-panel allows you to specify whether the analysis should be performed using a
model which is linear in the states, for this you can choose ERP or CMC. Alternatively you may
use a conductance based model, which is non-linear in the states by choosing, 'NMM’, '"MFM’ or
'NMDA". (see [71] for a description of the differences).

The steady state (frequency) response is generated automatically from the time domain record-
ings. The time duration of the frequency response is entered in the second panel in the time-
window. The options for detrending allow you to remove either 1st, 2nd, 3rd or 4th order
polynomial drifts from channel data. In the subsampling option you may choose to downsample
the data before constructing the frequency response. The number of modes specifies how many
components from the leadfield are present in channel data. The specification of between trial
effects and design matrix entry is the same as for the case of ERPs, described above.

16.10.2 The Lead-Field

The cross-spectral density is a description of the dependencies among the observed outputs of
these neuronal sources. To achieve this frequency domain description we must first specify the
likely sources and their location. If LFP data are used then only source names are required. This
information is added in the third panel by selecting 'LFP’. Alternatively, x,y,z coordinates are
specified for ECD or IMG solutions.

16.10.3 Connections

The bottom panel then allows you to specify the connections between sources and whether these
sources can change from trial type to trial type.

On the first row, three connection types may be specified between the areas. For NMM and
MFM options these are Excitatory, Inhibitory or Mixed excitatory and inhibitory connections.
When using the ERP option the user will specify if connections are 'Forward’, 'Backward’ or
"Lateral’. To specify a connection, switch on the particular connection matrix entry. For example
to specify an Inhibitory connection from source 3 to source 1, turn on the 'Inhib’ entry at position
(3,1).

On this row the inputs are also specified. These are where external experimental inputs enter
the network.

The matrix on the next row allows the user to select which of the connections specified above
can change across trial types. For example in a network of two sources with two mixed connections
(1,2) and (2,1), you may wish to allow only one of these to change depending on experimental
context. In this case, if you wanted the mixed connection from source 2 to source 1 to change
depending on trial type, then select entry (2,1) in this final connection matrix.

16.10.4 Cross Spectral Densities

The final selection concerns what frequencies you wish to model. These could be part of a broad
frequency range e.g. like the default 4 - 48 Hz, or you could enter a narrow band e.g. 8 to 12 Hz,
will model the alpha band in 1Hz increments.

Once you hit the 'invert DCM’ option the cross spectral densities are computed automatically
(using the spectral-toolbox). The data for inversion includes the auto-spectra and cross-spectra
between channels or between channel modes. This is computed using a multivariate autoregressive
model, which can accurately measure periodicities in the time-domain data. Overall the spectra
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are then presented as an upper-triangular, s x s matrix, with auto-spectra on the main diagonal
and cross-spectra in the off-diagonal terms.

16.10.5 Output and Results

The results menu provides several data estimates. By examining the ’spectral data’, you will
be able to see observed spectra in the matrix format described above. Selecting ’Cross-spectral
density’ gives both observed and predicted responses. To examine the connectivity estimates you
can select the ’coupling (A)’ results option, or for the modulatory parameters, the ’coupling (B)’
option. Also you can examine the input strength at each source by selecting the coupling (C)’
option, as in DCM for ERPs. The option ’trial-specific effects’ shows the change in connectivity
parameter estimates (from B) from trial to trial relative to the baseline connection (from A).
To examine the spectral input to these sources choose the ’Input’ option; this should look like
a mixture of white and pink noise. Finally the ’dipoles’ option allows visualisation of the a
posteriori position and orientation of all dipoles in your model.

16.11 Induced responses

DCM for induced responses aims to model coupling within and between frequencies that are
associated with linear and non-linear mechanisms respectively. The procedure to do this is similar
to that for DCM for ERP/ERF. In the following, we will just point out the differences in how
to specify models in the GUI. Before using the technique, we recommend reading about the
principles behind DCM for induced responses [18].

16.11.1 Data

The data to be modelled must be single trial, epoched data. We will model the entire spectra,
including both the evoked (phase-locked to the stimulus) and induced (non-phase-locked to the
stimulus) components.

16.11.2 Electromagnetic model

Currently, DCM for induced responses uses only the ECD method to capture the data features.
Note that a difference to DCM for evoked responses is that the parameters of the spatial model
are not optimized. This means that DCM for induced responses will project the data into source
space using the spatial locations provided by you.

16.11.3 Neuronal model

This is where you specify the connection architecture. Note that in DCM for induced responses,
the A-matrix encodes the linear and nonlinear coupling strength between sources.

16.11.4 Wavelet transform

This function can be called below the connectivity buttons and allows one to transfer data into
the time-frequency domain using a Morlet Wavelet transform as part of the feature extraction.
There are two parameters: The frequency window defines the desired frequency band and the
wavelet number specifies the temporal-frequency resolution. We recommend values greater than
5 to obtain a stable estimation.

16.11.5 Results
Frequency modes

This will display the frequency modes, identified using singular value decomposition of spectral
dynamics in source space (over time and sources).
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Time-Frequency

This will display the observed time-frequency power data for all pre-specified sources (upper
panel) and the fitted data (lower panel).

Coupling (A-Hz)

This will display the coupling matrices representing the coupling strength from source to target
frequencies.

16.12 Phase-coupled responses

DCM for phase-coupled responses is based on a weakly coupled oscillator model of neuronal
interactions.

16.12.1 Data

The data to be modeled must be multiple trial, epoched data. Multiple trials are required so
that the full state-space of phase differences can be explored. This is achieved with multiple
trials as each trial is likely to contain different initial relative phase offsets. Information about
different trial types is entered as it is with DCM for ERP ie. using a design matrix. DCM for
phase coupling is intended to model dynamic transitions toward synchronization states. As these
transitions are short it is advisable to use short time windows of data to model and the higher
the frequency of the oscillations you are interested in, the shorter this time window should be.
DCM for phase coupling will probably run into memory problems if using long time windows or
large numbers of trials.

16.12.2 Electromagnetic model

Currently, DCM for phase-coupled responses will work with either ECD or LFP data. Note that
a difference to DCM for evoked responses is that the parameters of the spatial model are not
optimized. This means that DCM for phase-coupled responses will project the data into source
space using the spatial locations you provide.

16.12.3 Neuronal model

This is where you specify the connection architecture for the weakly coupled oscillator model. If
using the GUI, the Phase Interaction Functions are given by a;;sin(¢; — ¢;) where a,; are the
connection weights that appear in the A-matrix and ¢; and ¢; are the phases in regions ¢ and j.
DCM for phase coupling can also be run from a MATLAB script. This provides greater flexibility
in that the Phase Interaction Functions can be approximated using arbitrary order Fourier series.
Have a look in the example_scripts to see how.

16.12.4 Hilbert transform

Pressing this button does two things. First, source data are bandpass filtered into the specified
range. Second, a Hilbert transform is applied from which time series of phase variables are
obtained.

16.12.5 Results
Sin(Data) - Region i

This plots the sin of the data (ie. sin of phase variable) and the corresponding model fit for the
ith region.



16.12. PHASE-COUPLED RESPONSES 141

Coupling (A),(B)

This will display the intrinsic and modulatory coupling matrices. The 4, jth entry in A specifies
how quickly region i changes its phase to align with region j. The corresponding entry in B shows
how these values are changed by experimental manipulation.
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Chapter 17

Display Image

Contents
17.1 Imageto Display . . . . . . . . v v v i i e e e e e e 146

This is an interactive facility that allows orthogonal sections from an image volume to be
displayed. Clicking the cursor on either of the three images moves the point around which the
orthogonal sections are viewed. The co-ordinates of the cursor are shown both in voxel co-
ordinates and millimetres within some fixed framework. The intensity at that point in the image
(sampled using the current interpolation scheme) is also given. The position of the cross-hairs
can also be moved by specifying the co-ordinates in millimetres to which they should be moved.
Clicking on the horizontal bar above these boxes will move the cursor back to the origin (analogous
to setting the cross-hair position (in mm) to [0 0 0]).

The images can be re-oriented by entering appropriate translations, rotations and zooms
into the panel on the left. The transformations can then be saved by hitting the "Reorient
images..." button. The transformations that were applied to the image are saved to the header
information of the selected images. The transformations are considered to be relative to any
existing transformations that may be stored. Note that the order that the transformations are
applied in is the same as in spm_matrix.m.

The "Reset..." button next to it is for setting the orientation of images back to transverse. It
retains the current voxel sizes, but sets the origin of the images to be the centre of the volumes
and all rotations back to zero.

The right panel shows miscellaneous information about the image. This includes:

Dimensions - the x, y and z dimensions of the image.

Datatype - the computer representation of each voxel.

Intensity - scale-factors and possibly a DC offset.

Miscellaneous other information about the image.

Vox size - the distance (in mm) between the centres of neighbouring voxels.

Origin - the voxel at the origin of the co-ordinate system

DIr Cos - Direction cosines. This is a widely used representation of the orientation of an
image.

There are also a few options for different resampling modes, zooms etc. You can also flip
between voxel space (as would be displayed by Analyze) or world space (the orientation that
SPM considers the image to be in). If you are re-orienting the images, make sure that world
space is specified. Blobs (from activation studies) can be superimposed on the images and the
intensity windowing can also be changed.

If you have put your images in the correct file format, then (possibly after specifying some
rigid-body rotations):
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The top-left image is coronal with the top (superior) of the head displayed at the top and the
left shown on the left. This is as if the subject is viewed from behind.

The bottom-left image is axial with the front (anterior) of the head at the top and the left
shown on the left. This is as if the subject is viewed from above.

The top-right image is sagittal with the front (anterior) of the head at the left and the top of
the head shown at the top. This is as if the subject is viewed from the left.

17.1 Image to Display

Image to display.
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|4 SPM12: Graphics
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Figure 17.1: The Display routine.
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Chapter 18

Check Registration

Contents
18.1 ImagestoDisplay . ... ... ... 149

Orthogonal views of one or more images are displayed. Clicking in any image moves the centre
of the orthogonal views. Images are shown in orientations relative to that of the first selected
image. The first specified image is shown at the top-left, and the last at the bottom right. The
fastest increment is in the left-to-right direction (the same as you are reading this).

If you have put your images in the correct file format, then (possibly after specifying some
rigid-body rotations):

The top-left image is coronal with the top (superior) of the head displayed at the top and the
left shown on the left. This is as if the subject is viewed from behind.

The bottom-left image is axial with the front (anterior) of the head at the top and the left
shown on the left. This is as if the subject is viewed from above.

The top-right image is sagittal with the front (anterior) of the head at the left and the top of
the head shown at the top. This is as if the subject is viewed from the left.

18.1 Images to Display

Images to display.
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Rendering

Contents
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19.2.1 Objects . . . . .« . L e 152
19.2.2 Lights . . . . . . . e 153

This is a toolbox that provides a limited range of surface rendering options. The idea is to
first extract surfaces from image data, which are saved in rend *.mat files. These can then be
loaded and displayed as surfaces. Note that OpenGL rendering is used, which can be problematic
on some computers. The tools are limited - and they do what they do.

19.1 Surface Extraction

User-specified algebraic manipulations are performed on a set of images, with the result being
used to generate a surface file. The user is prompted to supply images to work on and a number of
expressions to evaluate, along with some thresholds. The expression should be a standard matlab
expression, within which the images should be referred to as il, i2, i3,... etc. An isosurface file is
created from the results at the user-specified threshold.

19.1.1 Input Images

These are the images that are used by the calculator. They are referred to as il, i2, i3, etc in the
order that they are specified.

19.1.2 Surfaces

Multiple surfaces can be created from the same image data.

Surface

An expression and threshold for each of the surfaces to be generated.
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Expression Example expressions (f):
* Mean of six images (select six images)
f = ’(i1+i2+4i3+i4+i5+i6) /6’
* Make a binary mask image at threshold of 100
f ="11>100°
* Make a mask from one image and apply to another
f = "2.%(i1>100)’
- here the first image is used to make the mask, which is applied to the second image
* Sum of n images
f="il+i2+i3+i4+1i5 + ..

Surface isovalue(s) Enter the value at which isosurfaces through the resulting image is to be
computed.

19.2 Surface Rendering

This utility is for visualising surfaces. Surfaces first need to be extracted and saved in surf *.gii
files using the surface extraction routine.

19.2.1 Objects

Several surface objects can be displayed together in different colours and with different reflective
properties.

Object

Each object is a surface (from a surf *.gii file), which may have a number of light-reflecting
qualities, such as colour and shinyness.

Surface File Filename of the surf *.gii file containing the rendering information. This can be
generated via the surface extraction routine in SPM. Normally, a surface is extracted from grey
and white matter tissue class images, but it is also possible to threshold e.g. an spmT image so
that activations can be displayed.

Color Specify the colour using a mixture of red, green and blue. For example, white is specified
by 1,1,1, black is by 0,0,0 and purple by 1,0,1.

Red The intensity of the red colouring (0 to 1).
Green The intensity of the green colouring (0 to 1).
Blue The intensity of the blue colouring (0 to 1).

Diffuse Strength The strength with which the object diffusely reflects light. Mat surfaces
reflect light diffusely, whereas shiny surfaces reflect speculatively.

Ambient Strength The strength with which the object reflects ambient (non-directional) light-
ing.

Specular Strength The strength with which the object specularly reflects light (i.e. how shiny
it is). Mat surfaces reflect light diffusely, whereas shiny surfaces reflect speculatively.

Specular Exponent A parameter describing the specular reflectance behaviour. It relates to
the size of the high-lights.
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Specular Color Reflectance Another parameter describing the specular reflectance behaviour.

Face Alpha The opaqueness of the surface. A value of 1 means it is opaque, whereas a value
of 0 means it is transparent.

19.2.2 Lights

There should be at least one light specified so that the objects can be clearly seen.

Light

Specification of a light source in terms of position and colour.
Position The position of the light in 3D.

Color Specify the colour using a mixture of red, green and blue. For example, white is specified
by 1,1,1, black is by 0,0,0 and purple by 1,0,1.

Red The intensity of the red colouring (0 to 1).
Green The intensity of the green colouring (0 to 1).

Blue The intensity of the blue colouring (0 to 1).
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Image Calculator
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The image calculator is for performing user-specified algebraic manipulations on a set of
images, with the result being written out as an image. The user is prompted to supply images to
work on, a filename for the output image, and the expression to evaluate. The expression should
be a standard MATLAB expression, within which the images should be referred to as i1, i2, i3,...
etc.

20.1 Input Images

These are the images that are used by the calculator. They are referred to as il, i2, i3, etc in the
order that they are specified.

20.2 Output Filename

The output image is written to current working directory unless a valid full pathname is given.
If a path name is given here, the output directory setting will be ignored.

If the field is left empty, i.e. set to ”, then the name of the 1st input image, preprended with
'’, is used (change this letter in the spm_ defaults if necessary).

20.3 Owutput Directory

Files produced by this function will be written into this output directory. If no directory is given,
images will be written to current working directory. If both output filename and output directory
contain a directory, then output filename takes precedence.
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20.4 Expression

Example expressions (f):
* Mean of six images (select six images)
f = (i1 4+i2+i3+i4+i5-+i6) /6’
* Make a binary mask image at threshold of 100
="i1>100’
* Make a mask from one image and apply to another
f = ’i2.%(11>100)’
- here the first image is used to make the mask, which is applied to the second image
* Sum of n images
f="11+i24+13 +4 +i5 4 ..
* Sum of n images (when reading data into a data-matrix - use dmmtx arg)
f = ’sum(X)’

20.5 Additional Variables

Additional variables which can be used in expression.

20.5.1 Variable

Additional variable which can be used in expression.

Name

Variable name used in expression.

Value

Value of the variable.

20.6 Options

Options for image calculator

20.6.1 Data Matrix

If the dmtx flag is set, then images are read into a data matrix X (rather than into separate
variables i1, i2, i3,...). The data matrix should be referred to as X, and contains images in rows.
Computation is plane by plane, so in data-matrix mode, X is a NxK matrix, where N is the number
of input images [prod(size(Vi))], and K is the number of voxels per plane [prod(Vi(1).dim(1:2))].

20.6.2 Masking

For data types without a representation of NalN, implicit zero masking assumes that all zero
voxels are to be treated as missing, and treats them as NaN. NaN’s are written as zero (by
spm_ write plane), for data types without a representation of NaN.

20.6.3 Interpolation

With images of different sizes and orientations, the size and orientation of the first is used for
the output image. A warning is given in this situation. Images are sampled into this orientation
using the interpolation specified by the hold parameter.

The method by which the images are sampled when being written in a different space.

Nearest Neighbour

- Fastest, but not normally recommended.

Trilinear Interpolation
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- OK for PET, or realigned fMRI.

Sinc Interpolation

- Better quality (but slower) interpolation, especially
with higher degrees.

20.6.4 Data Type
Data-type of output image
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Import
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Import.

21.1 DICOM Import

DICOM Conversion. Most scanners produce data in DICOM format. This routine attempts to
convert DICOM files into SPM compatible image volumes, which are written into the current
directory by default. Note that not all flavours of DICOM can be handled, as DICOM is a very
complicated format, and some scanner manufacturers use their own fields, which are not in the
official documentation at http://medical.nema.org/

21.1.1 DICOM files
Select the DICOM files to convert.

21.1.2 Directory structure for converted files

Choose root directory of converted file tree. The options are:
* Output directory: ./<StudyDate-StudyTime>: Automatically determine the project name
and try to convert into the output directory, starting with a StudyDate-StudyTime subdirectory.
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This option is useful if automatic project recognition fails and one wants to convert data into a
project directory.

* Qutput directory: ./<PatientID>: Convert into the output directory, starting with a Pati-
entID subdirectory.

* Output directory: ./<PatientName>: Convert into the output directory, starting with a
PatientName subdirectory.

* No directory hierarchy: Convert all files into the output directory, without sequence/series
subdirectories

21.1.3 Output directory

Select a directory where files are written.

21.1.4 Protocol name filter

A regular expression to filter protocol names. DICOM images whose protocol names do not match
this filter will not be converted.

21.1.5 Conversion options
Output image format

DICOM conversion can create separate img and hdr files or combine them in one file. The single
file option will help you save space on your hard disk, but may be incompatible with programs
that are not NIfTIT-aware.

In any case, only 3D image files will be produced.

Use ICEDims in filename

If image sorting fails, one can try using the additional STEMENS ICEDims information to create
unique filenames. Use this only if there would be multiple volumes with exactly the same file
names.

21.2 MINC Import

MINC Conversion. MINC is the image data format used for exchanging data within the ICBM
community, and the format used by the MNI software tools. It is based on NetCDF. MINC is
no longer supported for reading images into SPM, so MINC files need to be converted to NIFTI
format in order to use them. See http://www.bic.mni.mcgill.ca/software/ for more information.

21.2.1 MINC files
Select the MINC files to convert.

21.2.2 Options

Conversion options

Data Type

Data-type of output images. Note that the number of bits used determines the accuracy, and the
amount of disk space needed.

Output image format

Output files can be written as .img + .hdr, or the two can be combined into a .nii file.
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21.3 ECAT Import

ECAT 7 Conversion. ECAT 7 is the image data format used by the more recent CTI PET
scanners.

21.3.1 ECAT files
Select the ECAT files to convert.

21.3.2 Options

Conversion options

Output image format

Output files can be written as .img + .hdr, or the two can be combined into a .nii file.

21.4 PAR/REC Import

Philips PAR/REC Import.

21.4.1 PAR files
Select the PAR files to convert.

21.4.2 Options

Conversion options

Output directory

Select a directory where files are written.

Output image format

Output files can be written as .img + .hdr, or the two can be combined into a .nii file.
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De-face Images

Contents
22.1 Imagestode-face . ... ... ... ... i 163

This is a little routine for attempting to strip the face from images, so individuals are more
difficult to identify from surface renderings.
De-faced images are prefixed by ’anon_ .

22.1 Images to de-face

Specify the NIfTT images to strip the face from.
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Deformations
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This is a utility for working with deformation fields. They can be loaded, inverted, combined
etc, and the results either saved to disk, or applied to some image or surface file. This utility was
intended for imaging experts and may therefore be a bit difficult for naive users. It provides a
great deal of flexibility, which may be confusing to some.

23.1 Composition

Deformation fields can be thought of as mappings. These can be combined by the operation of
"composition", which is usually denoted by a circle "o". Suppose x:A->B and y:B->C are two
mappings, where A, B and C refer to domains in 3 dimensions. Each element a in A points to
element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping from A to
C. The composition of these mappings is denoted by yox:A->C. Compositions can be combined
in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the right-to-left order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first).

23.1.1 Dartel flow

Imported Dartel flow field.
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Flow field

The flow field stores the deformation information. The same field can be used for both forward
or backward deformations (or even, in principle, half way or exaggerated deformations).

Forward /Backwards

The direction of the Dartel flow. Note that a backward transform will warp an individual subject’s
to match the template (ie maps from template to individual). A forward transform will warp the
template image to the individual.

Time Steps

The number of time points used for solving the partial differential equations. A single time point
would be equivalent to a small deformation model. Smaller values allow faster computations,
but are less accurate in terms of inverse consistency and may result in the one-to-one mapping
breaking down.

Dartel Template

Select the final Template file generated by Dartel. This will be affine registered with a TPM
file, such that the resulting spatially normalised images are closer aligned to MNI space. Leave
empty if you do not wish to incorporate a transform to MNI space (ie just click “done’ on the file
selector, without selecting any images).

23.1.2 Deformation Field

Deformations can be thought of as vector fields, and represented by three-volume images. In
SPM, deformation fields are saved in NIfTT format, with dimensions xdim x ydim x zdim x 1 x
3. Each voxel contains the x, y and z mm coordinates of where the deformation points.

23.1.3 Identity (Reference Image)

This option generates an identity transform, but this can be useful for changing the dimensions of
the resulting deformation (and any images that are generated from it). Dimensions, orientation
etc are derived from an image.

Image to base Id on

Specify the image file on which to base the dimensions, orientation etc.

23.1.4 Identity (Bounding Box and Voxel Size)

This option generates an identity transform, but this can be useful for changing the dimensions of
the resulting deformation (and any images that are generated from it). Dimensions, orientation
etc are derived from a specified bounding box and voxel dimensions.

Voxel sizes

Specify the voxel sizes of the deformation field to be produced. Non-finite values will default to
the voxel sizes of the template imagethat was originally used to estimate the deformation.

Bounding box

Specify the bounding box of the deformation field to be produced. Non-finite values will default
to the bounding box of the template imagethat was originally used to estimate the deformation.
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23.1.5 Imported sn.mat

Spatial normalisation, and the unified segmentation model of SPM5 save a parameterisation of
deformation fields. These consist of a combination of an affine transform, and nonlinear warps
that are parameterised by a linear combination of cosine transform basis functions. These are
saved in * sn.mat files, which can be converted to deformation fields.

Parameter File

Specify the _sn.mat to be used.

Voxel sizes

Specify the voxel sizes of the deformation field to be produced. Non-finite values will default to
the voxel sizes of the template imagethat was originally used to estimate the deformation.

Bounding box

Specify the bounding box of the deformation field to be produced. Non-finite values will default
to the bounding box of the template imagethat was originally used to estimate the deformation.

23.1.6 Inverse

Creates the inverse of a deformation field. Deformations are assumed to be one-to-one, in which
case they have a unique inverse. If y’:A->B is the inverse of y:B->A, then y’ oy =y oy’ = Id,
where Id is the identity transform.

Deformations are inverted using the method described in the appendix of:

* Ashburner J, Andersson JLR & Friston KJ (2000) "Image Registration using a Symmetric
Prior - in Three-Dimensions." Human Brain Mapping 9(4):212-225

Image to base inverse on

Specify the image file on which to base the dimensions, orientation etc.

23.2 Output

3

Various output options are available. The deformation may be saved to disk as a “y_*.nii
file.Images may be warped using the resulting deformation, either using a “pullback” procedure,
or a “pushforward”.The old style of spatial normalisation involved the pullback, whereas the
pushforward requires the inverse of the deformation used by the pullback. Finally, the deformation
may be used to warp a GIFTI surface file.

23.2.1 Save Deformation

The deformation may be saved to disk as a “y *.nii” file.

Save as

n

Save the result as a three-volume image. "y " will be prepended to the filename.

Output destination

Current directory All created files (deformation fields and warped images) are written to the
current directory.

Output directory The combined deformation field and the warped images are written into
the specified directory.
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23.2.2 Pullback

This is the old way of warping images, which involves resampling images based on a mapping
from the new (warped) image space back to the original image. The deformation should be the
inverse of the deformation that would be used for the pushforward procedure.

Apply to
Apply the resulting deformation field to some images. The filenames will be prepended by "w".

Output destination

Current directory All created files (deformation fields and warped images) are written to the
current directory.

Source directories The combined deformation field is written into the directory of the first
deformation field, warped images are written to the same directories as the source images.

Output directory The combined deformation field and the warped images are written into
the specified directory.

Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:

- Fastest, but not normally recommended.

Trilinear Interpolation:

- OK for PET, realigned fMRI, or segmentations

B-spline Interpolation:

- Better quality (but slower) interpolation [93], especially with higher degree splines. Can
produce values outside the original range (e.g. small negative values from an originally all positive
image).

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

Gaussian FWHM
Specify the full-width at half maximum (FWHM) of the Gaussian blurring kernel in mm. Three
values should be entered, denoting the FWHM in the x, y and z directions.

Filename Prefix

The name of the output file(s) will be the name of the input file(s) prefixed with this prefix.
Leave empty to use SPM default prefixes.

23.2.3 Pushforward

This is a newer way of warping images (for SPM at least), and involves the forward pushing
of voxel values from the original image into the appropriate place in the warped image. The
deformation field should be the inverse of the one used for the pullback procedure.

“Smoothed” (blurred) spatially normalised images are generated in such a way that the original
signal is preserved. Normalised images are generated by a “pushing” rather than a “pulling” (the
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usual) procedure. Note that a procedure related to trilinear interpolation is used, and no masking
is done. It is therefore recommended that the images are realigned and resliced before they are
spatially normalised, in order to benefit from motion correction using higher order interpolation.
Alternatively, contrast images generated from unsmoothed native-space fMRI/PET data can be
spatially normalised for a 2nd level analysis.

Two “preserve” options are provided. One of them should do the equavalent of generating
smoothed “modulated” spatially normalised images. The other does the equivalent of smoothing
the modulated normalised fMRI/PET, and dividing by the smoothed Jacobian determinants.

Apply to

Apply the resulting deformation field to some images. The filenames will be prepended by "w".

Weight Image

Select an image file to weight the warped data with. This is optional, but the idea is the same as
was used by JE Lee et al (2009) in their “A study of diffusion tensor imaging by tissue-specific,
smoothing-compensated voxel-based analysis” paper. In principle, a mask of (eg) white matter
could be supplied, such that the warped images contain average signal intensities in WM.

Output destination

Current directory All created files (deformation fields and warped images) are written to the
current directory.

Source directories The combined deformation field is written into the directory of the first
deformation field, warped images are written to the same directories as the source images.

Output directory The combined deformation field and the warped images are written into
the specified directory.

Field of View

The dimensions and voxel size of the resulting deformation may be defined from some image, or
by specifying voxel sizes and a bounding box.

Image Defined Use the dimensions, orientation etc of some pre-existing image.

User Defined The part of the deformation to use is specified by defining the bounding box
and voxel sizes that you would like to have. This is probably stating the obvious to many but
smaller voxels and a broader bounding box will take up more disk space, but may give a little
more accuracy.

Bounding box Specify the bounding box of the deformation field to be produced. Non-
finite values will default to the bounding box of the template imagethat was originally used to
estimate the deformation.

Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite
values will default to the voxel sizes of the template imagethat was originally used to estimate
the deformation.



170 CHAPTER 23. DEFORMATIONS

Preserve

Preserve Concentrations: Smoothed spatially normalised images (sw*) represent weighted aver-
ages of the signal under the smoothing kernel, approximately preserving the intensities of the
original images. This option is currently suggested for eg fMRI.

Preserve Total: Smoothed and spatially normalised images preserve the total amount of signal
from each region in the images (smw*). Areas that are expanded during warping are correspond-
ingly reduced in intensity. This option is suggested for VBM.

Gaussian FWHM

Specify the full-width at half maximum (FWHM) of the Gaussian blurring kernel in mm. Three
values should be entered, denoting the FWHM in the x, y and z directions. Note that you can
specify [0 0 0], but any "modulated" data will show aliasing, which occurs because of the way the
warped images are generated.

Filename Prefix

The name of the output file(s) will be the name of the input file(s) prefixed with this prefix.
Leave empty to use SPM default prefixes.

23.2.4 Surface

Surfaces may be warped using the resulting deformation. Note that a procedure similar to the
pushforward is used, so the deformation should be the inverse of the one that would be used for
spatially normalising images via the pullback procedure.

Surface

Select a GIFTI file to warp.

Output destination
Current directory All created files (deformation fields and warped images) are written to the

current directory.

Source directories The combined deformation field is written into the directory of the first
deformation field, warped images are written to the same directories as the source images.

Output directory The combined deformation field and the warped images are written into
the specified directory.

23.2.5 Save Jacobian Determinants

The Jacobian determinants may be saved to disk as a ) *.nii” file.

Save as

Save the Jacobian determinants as an image. "j " will be prepended to the filename.

Output destination
Current directory All created files (deformation fields and warped images) are written to the

current directory.

Output directory The combined deformation field and the warped images are written into
the specified directory.
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Chapter 24

FieldMap Toolbox

24.1 Introduction

This chapter describes how to use the FieldMap toolbox version 2.1' for creating unwrapped
field maps that can be used to do geometric distortion correction of EPI images [56, 57, 2]. The
methods are based on earlier work by Jezzard et al.,[59] and a phase-unwrapping algorithm by
Jenkinson [58]. The toolbox can be used via the SPM batch editor or in an interactive mode
so that the user can see the effect of applying different field maps and unwarping parameters
to EPI images. A voxel displacement map (VDM) is created that can be used with Realign &
Unwarp for doing a combined static and dynamic distortion correction or with an Apply VDM
function for doing a static distortion correction on a set of realigned images. Realign & Unwarp
is designed to work only with images acquired with the phase-encode direction aligned with the
anterior-posterior axis. Images acquired with phase-encode directions aligned with other axes can
be distortion corrected using the FieldMap toolbox and Apply VDM utility.

24.2 Presubtracted Phase and Magnitude Data

Calculate a voxel displacement map (VDM) from presubtracted phase and magnitude field map
data (Figure 24.1). This option expects a single magnitude image and a single phase image result-
ing from the subtraction of two phase images (where the subtraction is usually done automatically
by the scanner software). The phase image will be scaled between + /- PL.

24.2.1 Data

Subjects or sessions for which individual field map data has been acquired.

Subject
Data for this subject or field map session.
Phase Image Select a single phase image. This should be the result from the subtraction of

two phase images (where the subtraction is usually done automatically by the scanner software).
The phase image will be scaled between + /- PI.

Magnitude Image Select a single magnitude image. This is used for masking the phase
information and coregistration with the EPI data. If two magnitude images are available, select
the one acquired at the shorter echo time because it will have greater signal

FieldMap defaults FieldMap default values can be entered as a file or set of values.

1 FieldMap Version 2.0 can be downloaded as part of SPM: http://www.fil.ion.ucl.ac.uk/spm/software/
FieldMap Version 1.1 for SPM2 can be downloaded from http://www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap/

173


http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap/

174 CHAPTER 24. FIELDMAP TOOLBOX
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Calculate a voxel displacement map (VDM) from presubtracted phase and magnitude field map data. This option I
expects a single magnitude image and a single phase image resulfing from the subfraction of two phase images (where
the subtraction is usually done automatically by the scanner software). The phase image will be scaled between +/- PL.

This branch contains 1 ifems:

Figure 24.1: FieldMap using the SPM User Interface.

Defaults values Defaults values

Echo times [short TE long TE]| Enter the short and long echo times (in ms) of the data
used to acquire the field map.

Mask brain Select masking or no masking of the brain. If masking is selected, the magnitude
image is used to generate a mask of the brain.

Blip direction Enter the blip direction. This is the polarity of the phase-encode blips de-
scribing the direction in which k-space is traversed along the y-axis during EPI acquisition with
respect to the coordinate system used in SPM. In this coordinate system, the phase encode direc-
tion corresponds with the y-direction and is defined as positive from the posterior to the anterior
of the head.

The convention used to describe the direction of the k-space traversal is based on the coor-
dinate system used by SPM. In this coordinate system, the phase encode direction corresponds
with the y-direction and is defined as positive from the posterior to the anterior of the head.
The x-direction is defined as positive from left to right and the z-direction is defined as positive
from foot to head. The polarity of the phase-encode blips describes in which direction k-space is
traversed along the y-axis with respect to the coordinate system described here.

Total EPI readout time Enter the total EPI readout time (in ms). This is the time taken to
acquire all of the phase encode steps required to cover k-space (ie one image slice). For example,
if the EPI sequence has 64 phase encode steps, the total readout time is the time taken to acquire
64 echoes, e.g. total readout time = number of echos x echo spacing. This time does not include 1)
the duration of the excitation, ii) the delay between, the excitation and the start of the acquisition
or iii) time for fat saturation etc.

EPI-based field map? Select non-EPI or EPI based field map. The field map data may
be acquired using a non-EPI sequence (typically a gradient echo sequence) or an EPI sequence.
The processing will be slightly different for the two cases. If using an EPI-based field map, the
resulting Voxel Displacement Map will be inverted since the field map was acquired in distorted
space.

Jacobian modulation? Select whether or not to use Jacobian modulation. This will adjust
the intensities of voxels that have been stretched or compressed but in general is not recommended
for EPI distortion correction

uflags Different options for phase unwrapping and field map processing

UNWRAPPING METHOD Select method for phase unwrapping

FWHM FWHM of Gaussian filter used to implement weighted smoothing of unwrapped maps.

PAD Size of padding kernel if required.
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WEIGHTED SMOOTHING Select normal or weighted smoothing.

mflags Different options used for the segmentation and creation of the brain mask.

TEMPLATE IMAGE FOR BRAIN MASKING Select template file for segmentation to create brain
mask

FWHM FWHM of Gaussian filter for smoothing brain mask.

NUMBER OF EROSIONS Number of erosions used to create brain mask.

NUMBER OF DILATIONS Number of dilations used to create brain mask.

THRESHOLD Threshold used to create brain mask from segmented data.

REGULARIZATION Regularization value used in the segmentation. A larger value helps the
segmentation to converge.

Defaults File Select the 'pm__defaults*.m’ file containing the parameters for the field map
data. Please make sure that the parameters defined in the defaults file are correct for your field
map and EPI sequence. To create your own customised defaults file, either edit the distributed
version and/or save it with the name 'pm_defaults yourname.m’.

EPI Sessions If a single set of field map data will be used for multiple EPI runs/sessions, select
the first EPI in each run/session. A VDM file will created for each run/session, matched to the
first EPT in each run/session and saved with a unique name extension.

Session Data for this session.

Select EPI to Unwarp Select a single image to distortion correct. The corrected image will
be saved with the prefix u. Note that this option is mainly for quality control of correction so
that the original and distortion corrected images can be displayed for comparison. To unwarp
multiple images please use either Realign & Unwarp or Apply VDM.

Match VDM to EPI? Match VDM file to EPI image. This will coregister the field map data
to the selected EPI for each run/session.

In general, the field map data should be acquired so that it is as closely registered with the
EPI data as possible but matching can be selected if required. If a precalculated field map was
loaded then the user is prompted to select a magnitude image in the same space as the field map.

If real and imaginary images were selected, the toolbox automatically creates a magnitude image
from these images and saves it with the name mag  NAME-OF-FIRST-INPUT-IMAGE.img.

Name extension for run/session specific VDM file This will be the name extension fol-
lowed by an incremented integer for run/session specific VDM files.

Write unwarped EPI? Write out distortion corrected EPI image. The image is saved with
the prefix u. Note that this option is mainly for quality control of correction so that the original
and distortion corrected images can be displayed for comparison. To unwarp multiple images
please use either Realign & Unwarp or Apply VDM.

Select anatomical image for comparison Select an anatomical image for comparison with
the distortion corrected EPI or leave empty. Note that this option is mainly for quality control
of correction.

Match anatomical image to EPI? Match the anatomical image to the distortion corrected
EPI. Note that this option is mainly for quality control of correction allowing for visual inspection
and comparison of the distortion corrected EPI.

24.3 Real and Imaginary Data

Calculate a voxel displacement map (VDM) from real and imaginary field map data. This option
expects two real and imaginary pairs of data of two different echo times. The phase images will
be scaled between +/- PL.



176 CHAPTER 24. FIELDMAP TOOLBOX

24.3.1 Data

Subjects or sessions for which individual field map data has been acquired.

Subject

Data for this subject or field map session.

Short Echo Real Image Select short echo real image

Short Echo Imaginary Image Select short echo imaginary image
Long Echo Real Image Select long echo real image

Long Echo Imaginary Image Select long echo imaginary image

Other inputs As for Presubtracted Phase and Magnitude Data.

24.4 Phase and Magnitude Data

Calculate a voxel displacement map (VDM) from double phase and magnitude field map data.
This option expects two phase and magnitude pairs of data of two different echo times.

24.4.1 Data

Subjects or sessions for which individual field map data has been acquired.

Subject

Data for this subject or field map session.

Short Echo Phase Image Select short echo phase image

Short Echo Magnitude Image Select short echo magnitude image
Long Echo Phase Image Select long echo phase image

Long Echo Magnitude Image Select long echo magnitude image

Other inputs As for Presubtracted Phase and Magnitude Data.

24.5 Precalculated FieldMap (in Hz)

Calculate a voxel displacement map (VDM) from a precalculated field map. This option expects
a processed field map (ie phase unwrapped, masked if necessary and scaled to Hz). Precalculated
field maps can be generated by the FieldMap toolbox and stored as fpm_* files.

24.5.1 Data

Subjects or sessions for which individual field map data has been acquired.

Subject

Data for this subject or field map session.
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Precalculated field map Select a precalculated field map. This should be a processed field
map (ie phase unwrapped, masked if necessary and scaled to Hz) , for example as generated by
the FieldMap toolbox and are stored with fpm * prefix.

Select magnitude image in same space as fieldmap Select magnitude image which is in
the same space as the field map to do matching to EPI.

Other inputs As for Presubtracted Phase and Magnitude Data.

24.6 Apply VDM

Apply VDM (voxel displacement map) to resample voxel values in selected image(s). This allows
a VDM to be applied to any images which are assumed to be already realigned (e.g. including
EPI fMRI time series and DTI data).

The VDM can be been created from a field map acquisition using the FieldMap toolbox and
comprises voxel shift values which describe geometric distortions occuring as a result of magnetic
susceptbility artefacts. Distortions along any single dimension can be corrected therefore input
data may have been acquired with phase encode directions in X, Y (most typical) and Z.

The selected images are assumed to be realigned to the first in the time series (e.g. using
Realign: Estimate) but do not need to be resliced. The VDM is assumed to be in alignment with
the images selected for resampling (note this can be achieved via the FieldMap toolbox). The
resampled images are written to the input subdirectory with the same (prefixed) filename.

e.g. The typical processing steps for fMRI time series would be 1) Realign: Estimate, 2)
FieldMap to create VDM, 3) Apply VDM.

Note that this routine is a general alternative to using the VDM in combination with Realign
& Unwarp which estimates and corrects for the combined effects of static and movement-related
susceptibility induced distortions. Apply VDM can be used when dynamic distortions are not
(well) modelled by Realign & Unwarp (e.g. for fMRI data acquired with R->L phase-encoding
direction, high field fMRI data or DTI data).

24.6.1 Data

Subjects or sessions for which VDM file is being applied to images.

Session

Data for this session.

Images Select scans for this session. These are assumed to be realigned to the first in the time
series (e.g. using Realign: Estimate) but do not need to be resliced

Fieldmap (vdm* file) Select VDM (voxel displacement map) for this session (e.g. created via
FieldMap toolbox). This is assumed to be in alignment with the images selected for resampling
(note this can be achieved via the FieldMap toolbox).

24.6.2 Reslice Options
Apply VDM reslice options

Distortion direction

In which direction are the distortions? Any single dimension can be corrected therefore input
data may have been acquired with phase encode directions in Y (most typical), X or Z
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Reslice which images 7

All Tmages (1..n)
This applies the VDM and reslices all the images.
All Images + Mean Image
This applies the VDM reslices all the images and creates a mean of the resliced images.

Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not recommended for image realignment. Trilinear interpolation is
probably OK for PET, but not so suitable for fMRI because higher degree interpolation generally
gives better results [93, 94, 95]. Although higher degree methods provide better interpolation,
but they are slower because they use more neighbouring voxels.

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed. Also the
recommended option if you are not really sure.

Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space)
etc.

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

Filename Prefix

Specify the string to be prepended to the filenames of the distortion corrected image file(s).
Default prefix is "u’.

24.7 Creating Field Maps Using the FieldMap GUI

The FieldMap Toolbox GUI is shown on the left Figure 24.2. It is divided into two parts. The
top part deals with creating the field map in Hz and the bottom part deals with creating the
voxel displacement map (VDM) and unwarping the EPI. The toolbox can be used by working
through the different inputs in the following order:

24.7.1 Create field map in Hz
Load defaults file

Select the defaults file from which to load default parameters. If necessary, the parameters
used to create the field map can be temporarily modified using the GUI. To change the default
parameters, edit pm_defaults.m or create a new file called pm_defaults_NAME.m (as described
in Section 24.2.1).
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Fieldmap in Hz

Warped EP|

[%] FieldMap Toolbox (version 2.1} f i) ]

Rl |@PM Create field map in Hz Default -

Short TE Load Phase
1000 e Load Mag.

Long TE Load Phase
1245 e Load Mag

Maskbrain: O Yes @ No Calculate Write

Precalculated

i s

Create voxel displacement map (VDM) and unwarp EPI

Unwarped EP|

EPI-based field map Yes @ No

Polarity of phase-encode blips ® -ve +ve
Apply Jacobian modulation Yes ® No
Total EPI readout time 2110 ms

Load EPlimage Match VDM to EPI Write unwarped

Structural

Load structural Match structural Help

Figure 24.2: FieldMap GUI and Results.
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Data Input Format

PM The acquired field map images are in phase and magnitude format. There may be a single
pair of phase and magnitude images (i.e. 2 images) in which case the phase image has been
created by the vendor sequence from two echo times acquisitions. Alternatively there may be
two pairs of phase and magnitude images, one for each echo time(ie 4 images). The units for the
phase images MUST BE RADIANS BETWEEN +pi and -pi. The user will be asked if this is
required when the images are selected.

RI The acquired field map images are in real and imaginary format. Two pairs of real and
imaginary image volumes, one for a shorter and one for a longer echo time (ie 4 images)?.

File Selection

Select NIfTT format images. Generally, the acquired scanner files will be in dicom format which
can be correctly converted using the DICOM converter in the corresponding version of SPM.
DICOM and other image formats can also be converted to using MRIcro®.

If the data input format is PM, load Phase and Magnitude images:

1. Single phase image OR phase of short echo-time image.
2. Single magnitude image OR magnitude of short echo-time image.

3. LEAVE EMPTY if input consists of a single phase and magnitude pair OR phase of long
echo-time image.

4. LEAVE EMPTY if input consists of a single phase and magnitude pair OR magnitude of
long echo-time image.

OR If the data input format is RI, load Real and Magnitude images:
1. Real part of short echo-time image.
2. Imaginary part of short echo-time image.
3. Real part of long echo-time image.

4. Imaginary part of long echo-time image.

Short TE/Long TE (ms)

Specify the short and long echo times in ms associated with the field map acquisition. Both of
these values are required even if a single phase and magnitude image is used as input.

Mask brain

Specify yes to generate a brain mask using the magnitude data which will be used to exclude
regions of the field map outside of the brain.

Calculate

Calculate an unwrapped field map in Hz which is stored in memory. This represents the map
of phase changes associated with the measured field map data. The processing is described
in more detail in Section 24.10 and involves some or all of the following steps (as specified in
spm__defaults.m):

1. Calculation of a Hz fieldmap from input data
2. Segmentation to exclude regions outside of the brain

3. Phase unwrapping

2 NB If using SPM2, the data input format can only be changed by editing the spm_ defaults.m file. This is
described in Section 24.2.1.
3MRlIcro is freely available from http://www.cla.sc.edu/psyc/faculty/rorden/mricro.html.
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4. Smoothing and dilation of the processed fieldmap

The processed field map (in Hz) is displayed in the graphics window (top row, right Figure
24.1) and the field at different points can be explored. The field map in Hz is converted to a VDM
(voxel displacement map) using the parameters shown in the FieldMap GUI and saved with the
filename vdm5 NAME-OF-FIRST-INPUT-IMAGE.img in the same directory as the acquired
field map images. The VDM file is overwritten whenever the field map is recalculated or when
any parameters are changed. The resulting VDM file can be used for unwarping the EPI using
Realign & Unwarp in SPM (see Section 24.9).

Write

Write out the processed field map (in Hz) as a Nifti format image. The image will be saved with
the filename fpm NAME-OF-FIRST-INPUT-IMAGE.img in the same directory as the acquired
field map images.

Load Pre-calculated

Load a precalculated unwrapped field map (fpm_.img). This should be a single image volume
with units of Hz in NIfTI format. The precalculated field map may have been created previously
using the FieldMap toolbox or by other means. Once loaded, the field map is displayed in the
graphics window (top row, right, Figure 24.1) and the field at different points can be explored.

Field map value (Hz)

Interrogate the value of the field map in Hz at the location specified by the mouse pointer in the
graphics window.

24.7.2 Create voxel displacement map (VDM) and unwarp EPI

When any of the parameters below are changed, a new VDM is created and written out as

vdm5 NAME-OF-FIRST-INPUT-IMAGE.img. The vdm5 NAME-OF-FIRST-INPUT-IMAGE.

file is not updated unless 'Match VDM to EPT’ is selected as described in Section 24.7.2.

EPI-based field map - Yes/No

Select Yes if the field map is based on EPI data or No otherwise. Most scanner vendor field map
sequences are non-EPI.

Polarity of phase-encode blips - +ve/-ve

Select +ve or -ve blip direction. When images are acquired K-space can be traversed using positive
or negative phase-encode blips. This direction will influence the geometric distortions in terms of
whether the affected regions of the image are stretched or compressed.

The convention used to describe the direction of the k-space traversal is based on the coor-
dinate system used by SPM. In this coordinate system, the phase encode direction corresponds
with the y-direction and is defined as positive from the posterior to the anterior of the head.
The x-direction is defined as positive from left to right and the z-direction is defined as positive
from foot to head. The polarity of the phase-encode blips describes in which direction k-space is
traversed along the y-axis with respect to the coordinate system described here.

Apply Jacobian modulation - Yes/No

Select Yes to do Jacobian Modulation to adjust the intensities of voxels that have been stretched
or compressed. In general this is not recommended for unwarping EPI data at this stage.

mat
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Total EPI readout time (ms)

Enter the total time in ms for the readout of the EPI echo train which is typically 10s of ms.
This is the time taken to acquire all of the phase encode steps required to cover k-space (ie one
image slice). For example, if the EPI sequence has 64 phase encode steps, the total readout time
is the time taken to acquire 64 echoes: total readout time = number of echoes x echo spacing.
This time does not include i) the duration of the excitation, ii) the delay between the excitation
and the start of the acquisition or iii) time for fat saturation.

Load EPI image

Select a sample EPI image in NIfTT format. This image is automatically unwarped using the VDM
calculated with the current parameters. The warped and the unwarped image are displayed in
the graphics window underneath the field map (middle rows, right, Figure 24.1).

Match VDM to EPI

Select this option to match the field map magnitude data to the EPI image before it is used to
unwarp the EPI. In general, the field map data should be acquired so that it is as closely registered
with the EPI data as possible but matching can be selected if required. If a precalculated field
map was loaded then the user is prompted to select a magnitude image in the same space as
the field map. If real and imaginary images were selected, the toolbox automatically creates a
magnitude image from these images and saves it with the name mag  NAME-OF-FIRST-INPUT-
IMAGE.img.

Write unwarped

Write unwarped EPI image with the filename uNAME_OF_EPI.img.

Load structural

Load a structural image for comparison with unwarped EPI. This is displayed in the graphics
window below the other images (bottom row, right fig 1).

MatchStructural

Coregister the structural image to the unwarped EPI and write the resulting transformation
matrix to the header of the selected structural image.

Help

Call spm_help to display FieldMap.man.

Quit

Quit the toolbox and closes all windows associated with it.

24.8 Using the FieldMap in Batch scripts

FieldMap_preprocess.m which calls FieldMap_create.m gives an example of how to run the
FieldMap toolbox without using the GUI. To run the script, make sure your MATLAB path
includes the directory where the FieldMap toolbox is installed. This can be done using the Set
Path option under File in the MATLAB windows manager or using the command:

addpath /whatever/spm/toolbox/FieldMap
To run the FieldMap batch script, in MATLAB enter the following command:

VDM = FieldMap_preprocess(fm_dir,epi_dir, [tel, te2, epifm, tert, kdir, mask, match]



24.9. USING THE VDM FILE WITH UNWARP 183

where

fm_ dir - name of directory containing fieldmap images.(e.g. fm_dir =’/path/studyl/subjl/fieldmap’)

epi_ dir - name of directory containing epi images. (e.g. epi_dir =’/path/studyl/subjl/images’)

tel - short echo time (in ms)

te2 - long echo time (in ms)

epifm - epi-based fieldmap - yes or no (1,/0)

tert - total echo readout time (in ms)

kdir - blip direction (1/-1)

mask do brain segmentation to mask field map (1/0)

match match vdm file to first EPI in run (1/0).

NB: FieldMap will match the field map to the first epi image in the time series (after removing
the dummy scans). Therefore, epi dir must be the directory that contains the epi run that all
other images will be realigned to.

The script will create an fpm* file, a vdm5_* file and an unwarped version of the EPI saved
with the prescript “u”.

24.9 Using the VDM file with Unwarp

In SPM, select the Realign & Unwarp option. For the input data called Phase map (vdm* file),
select the vdmb _ or vdm5 _ file for the subject and/or session. If you acquired more than one
session (or run) of EPI images, you need to select a different vdm5_* file for each one. For more
information about Unwarp see http://www.fil.ion.ucl.ac.uk/spm/toolbox/unwarp.

24.10 Appendices

24.10.1 Processing Hz field maps

Processing field maps involves a series of steps for which certain parameters in the spm _defaults
file must be set.

1. If the acquired field map data comprises two complex images, the phase difference between
them is calculated.

2. The phase map is unwrapped using the method specified by spm__def. UNWRAPPING METHOD
= 'Mark3D’ or 'Mark2D’ or "Huttonish’. For a description of these different methods see
spm__unwrap.m or FieldMap principles.man. The default option is "Mark3D’.

3. A mask is created so that unwrapping only occurs in regions where there is signal. If
necessary, this mask can be expanded so that any voxel that hasn’t been unwrapped and
is less than spm_def.PAD/2 voxels away from an unwrapped one will be replaced by an
average of the surrounding unwrapped voxels. This can be done by setting the parameter
spm__def.PAD to a value greater than 0. The default value is 0 but a value > 0 (eg 10) may
be necessary if normal smoothing is chosen instead of weighted smoothing (as explained in
the next step).

4. If required a mask can be generated to exclude regions of the fieldmap outside of the brain
(in addition to the unwrapping mask described above). This step uses SPM segmentation
for which the parameters in spm_def. MFLAGS can be set. For example, if the segmen-
tation fails, (maybe because the fieldmap magnitude image doesn’t have enough contrast),
spm_def. MFLAGS.REG can be increased to say 0.05). The other parameters control mor-
phological operations to generate a smooth brain mask and have been set empirically.

5. The unwrapped phase map is scaled by 1/(2*PI*difference in echo time) to convert it to
Hz.

6. A weighted gaussian smoothing (weighted by the inverse of the noise) is performed on the
unwrapped phase-map if the parameter spm _def. WS = 1. If spm_ def. WS = 0, a normal
smoothing is done. The weighted smoothing is particularly slow on large data sets ie high
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resolution. If field maps are acquired at high resolution then it is recommended to use
spm__def. WS = 0 and do some padding of the intensity mask eg spm def.PAD = 10. The
size of the Gaussian filter used to implement either weighted or normal smoothing of the
unwrapped maps is usually set to spm__def FWHM = 10.

24.10.2 Converting Hz field map to VDM

1. The field map in Hz is multiplied by the total EPI readout time (in ms, ) of the EPI image to
be unwarped, resulting in a VDM. The readout time is specified by spm_def. TOTAL EPI READOUT ~
(eg typically 10s of ms).The total EPI readout time is the time taken to acquire all of the
phase encode steps required to cover k-space (ie one image slice). For example, if the EPI
sequence has 64 phase encode steps, the total readout time is the time taken to acquire 64
echoes, e.g. total readout time = number of echoes x echo spacing. This time does not
include i) the duration of of the excitation, ii) the delay between the excitation and the
start of the acquisition or iii) time for fat saturation etc.

2. The VDM is multiplied by +/-1 to indicate whether the K-space traversal for the data ac-
quisition has a +ve or -ve blip direction. This will ensure that the unwarping is performed in
the correct direction and is specified by spm def K SPACE TRAVERSAL BLIP DIR
=+4/- 1.

3. The toolbox must know if the field map is based on an EPI or non-EPT acquisition. If using
an EPI-based field map, the VDM must be inverted since the field map was acquired in
warped space. This is specified by spm_def. EPI BASED FIELDMAPS = 1 or 0.

4. Jacobian Modulation can be applied to the unwarped EPI image. This modulates the
intensity of the unwarped image so that in regions where voxels were compressed, the
intensity is decresed and where voxels were stretched, the intensities are increased slightly.
The modulation involves multiplying the unwarped EPI by 1 + the 1-d derivative of the
VDM in the phase direction. An intensity adjustment of this nature may improve the
coregistration results between an unwarped EPI and an undistorted image. This is specified
by spm_def.DO_JACOBIAN MODULATION = 0 or 1.

5. When any of the above conversion parameters are changed or a new EPI is selected,
a new VDM is created and saved with the filename vdm5 NAME-OF-FIRST-INPUT-
IMAGE.img. Any previous copy of the .img file is overwritten, but the corresponding .mat
file is retained. It is done this way because the VDM may have already been coregiseterd to
the EPI (as described below). Then, for an EPI-based VDM, the match between the VDM
and the EPI will still be valid even if any of the above parameters have been changed. If the
VDM is non-EPI-based and any of the above parameters are changed, the match between
the VDM and the EPI may no longer be valid. In this case a warning is given to the user
that it may be necessary to perform the coregistration again.

24.10.3 Matching field map data to EPI data

1. If required, the fieldmap can be matched to the EPI. This is done slightly differently de-
pending on whether the field map is based on EPI or non-EPI data. If using an EPI field
map, the magnitude image is coregistered to the EPI. The resulting transformation matrix
is used to sample the VDM file in the space of the EPI before unwarping.

2. If using a non-EPI field map, the VDM is used to forward warp the magnitude image
which is then coregistered to the EPI. The forward warped image is saved with the filename
wifmag NAME-OF-FIRST-INPUT-IMAGE.img.
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This toolbox is based around the “A Fast Diffeomorphic Registration Algorithm” paper [3]
. The idea is to register images by computing a “flow field”, which can then be “exponentiated”
to generate both forward and backward deformations. Currently, the software only works with
images that have isotropic voxels, identical dimensions and which are in approximate alignment
with each other. One of the reasons for this is that the approach assumes circulant boundary
conditions, which makes modelling global rotations impossible. Another reason why the images
should be approximately aligned is because there are interactions among the transformations that
are minimised by beginning with images that are already almost in register. This problem could
be alleviated by a time varying flow field, but this is currently computationally impractical.

Because of these limitations, images should first be imported. This involves taking the
_seg_sn.mat” files produced by the segmentation code of SPM5, and writing out rigidly trans-
formed versions of the tissue class images, such that they are in as close alignment as possible
with the tissue probability maps. Rigidly transformed original images can also be generated, with
the option to have skull-stripped versions.

The next step is the registration itself. This can involve matching single images together, or it
can involve the simultaneous registration of e.g. GM with GM, WM with WM and 1-(GM+WM)
with 1-(GM+WM) (when needed, the 1-(GM+WM) class is generated implicitly, so there is no
need to include this class yourself). This procedure begins by creating a mean of all the images,
which is used as an initial template. Deformations from this template to each of the individual
images are computed, and the template is then re-generated by applying the inverses of the
deformations to the images and averaging. This procedure is repeated a number of times.

Finally, warped versions of the images (or other images that are in alignment with them) can
be generated.

This toolbox is not yet seamlessly integrated into the SPM package. Eventually, the plan
is to use many of the ideas here as the default strategy for spatial normalisation. The toolbox
may change with future updates. There will also be a number of other (as yet unspecified)
extensions, which may include a variable velocity version (related to LDDMM). Note that the
Fast Diffeomorphism paper only describes a sum of squares objective function. The multinomial
objective function is an extension, based on a more appropriate model for aligning binary data
to a template.

wk

25.1 Initial Import

Images first need to be imported into a form that Dartel can work with. If the default segmen-
tation is used (ie the Segment button), then this involves taking the results of the segmentation
(* seg sn.mat) [8] , in order to have rigidly aligned tissue class images. Typically, there would
be imported grey matter and white matter images, but CSF images can also be included. The
subsequent Dartel alignment will then attempt to nonlinearly register these tissue class images
together. If the new segmentation routine is used (from the toolbox), then this includes the
option to generate “imported” tissue class images. This means that a seperate importing step is
not needed for it.

25.1.1 Parameter Files

Select ’_sn.mat’ files containing the spatial transformation and segmentation parameters. Rigidly
aligned versions of the image that was segmented will be generated. The image files used by the
segmentation may have moved. If they have, then (so the import can find them) ensure that they
are either in the output directory, or the current working directory.
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25.1.2 Output Directory

Select the directory where the resliced files should be written.

25.1.3 Bounding box

The bounding box (in mm) of the volume that is to be written (relative to the anterior commis-
sure). Non-finite values will be replaced by the bounding box of the tissue probability maps used
in the segmentation.

25.1.4 Voxel size

The (isotropic) voxel sizes of the written images. A non-finite value will be replaced by the
average voxel size of the tissue probability maps used by the segmentation.

25.1.5 Image option

A resliced version of the original image can be produced, which may have various procedures
applied to it. All options will rescale the images so that the mean of the white matter intensity
is set to one. The “skull stripped” versions are the images simply scaled by the sum of the grey
and white matter probabilities.

25.1.6 Grey Matter

Produce a resliced version of this tissue class?

25.1.7 White Matter

Produce a resliced version of this tissue class?

25.1.8 CSF

Produce a resliced version of this tissue class?

25.2 Run Dartel (create Templates)

Run the Dartel nonlinear image registration procedure. This involves iteratively matching all the
selected images to a template generated from their own mean. A series of Template*.nii files are
generated, which become increasingly crisp as the registration proceeds.

25.2.1 Images

Select the images to be warped together. Multiple sets of images can be simultaneously registered.
For example, the first set may be a bunch of grey matter images, and the second set may be the
white matter images of the same subjects.

Images

Select a set of imported images of the same type to be registered by minimising a measure of
difference from the template.

25.2.2 Settings

Various settings for the optimisation. The default values should work reasonably well for aligning
tissue class images together.
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Template basename

Enter the base for the template name. Templates generated at each outer iteration of the pro-
cedure will be basename 1.nii, basename 2.nii etc. If empty, then no template will be saved.
Similarly, the estimated flow-fields will have the basename appended to them.

Regularisation Form

The registration is penalised by some “energy” term. Here, the form of this energy term is
specified. Three different forms of regularisation can currently be used.

Outer Iterations

The images are averaged, and each individual image is warped to match this average. This is
repeated a number of times.

Outer Iteration Different parameters can be specified for each outer iteration. Each of them
warps the images to the template, and then regenerates the template from the average of the
warped images. Multiple outer iterations should be used for more accurate results, beginning with
a more coarse registration (more regularisation) then ending with the more detailed registration
(less regularisation).

Inner Iterations The number of Gauss-Newton iterations to be done within this outer
iteration. After this, new average(s) are created, which the individual images are warped to
match.

Reg params For linear elasticity, the parameters are mu, lambda and id. For membrane
energy, the parameters are lambda, unused and id.id is a term for penalising absolute displace-
ments, and should therefore be small. For bending energy, the parameters are lambda, id1 and
id2, and the regularisation is by (-lambda*Laplacian + id1)2 + id2.

Use more regularisation for the early iterations so that the deformations are smooth, and then
use less for the later ones so that the details can be better matched.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down. Earlier iteration could use fewer time points, but later ones
should use about 64 (or fewer if the deformations are very smooth).

Smoothing Parameter A LogOdds parameterisation of the template is smoothed using a
multi-grid scheme. The amount of smoothing is determined by this parameter.

Optimisation Settings

Settings for the optimisation. If you are unsure about them, then leave them at the default
values. Optimisation is by repeating a number of Levenberg-Marquardt iterations, in which the
equations are solved using a full multi-grid (FMG) scheme. FMG and Levenberg-Marquardt are
both described in Numerical Recipes (2nd edition).

LM Regularisation Levenberg-Marquardt regularisation. Larger values increase the the sta-
bility of the optimisation, but slow it down. A value of zero results in a Gauss-Newton strategy,
but this is not recommended as it may result in instabilities in the FMG.

Cycles Number of cycles used by the full multi-grid matrix solver. More cycles result in higher
accuracy, but slow down the algorithm. See Numerical Recipes for more information on multi-grid
methods.
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Iterations Number of relaxation iterations performed in each multi-grid cycle. More iterations
are needed if using “bending energy” regularisation, because the relaxation scheme only runs very
slowly. See the chapter on solving partial differential equations in Numerical Recipes for more
information about relaxation methods.

25.3 Run Dartel (existing Templates)

Run the Dartel nonlinear image registration procedure to match individual images to pre-existing
template data. Start out with smooth templates, and select crisp templates for the later iterations.

25.3.1 Images

Select the images to be warped together. Multiple sets of images can be simultaneously registered.
For example, the first set may be a bunch of grey matter images, and the second set may be the
white matter images of the same subjects.

Images

Select a set of imported images of the same type to be registered by minimising a measure of
difference from the template.

25.3.2 Settings

Various settings for the optimisation. The default values should work reasonably well for aligning
tissue class images together.

Regularisation Form

The registration is penalised by some “energy” term. Here, the form of this energy term is
specified. Three different forms of regularisation can currently be used.

Outer Iterations

The images are warped to match a sequence of templates. Early iterations should ideally use
smoother templates and more regularisation than later iterations.

Outer Iteration Different parameters and templates can be specified for each outer iteration.

Inner Iterations The number of Gauss-Newton iterations to be done within this outer
iteration.

Reg params For linear elasticity, the parameters are mu, lambda and id. For membrane
energy, the parameters are lambda, unused and id.id is a term for penalising absolute displace-
ments, and should therefore be small. For bending energy, the parameters are lambda, id1 and
id2, and the regularisation is by (-lambda*Laplacian + id1)2 + id2.

Use more regularisation for the early iterations so that the deformations are smooth, and then
use less for the later ones so that the details can be better matched.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down. Earlier iteration could use fewer time points, but later ones
should use about 64 (or fewer if the deformations are very smooth).

Template Select template. Smoother templates should be used for the early iterations.
Note that the template should be a 4D file, with the 4th dimension equal to the number of sets
of images.
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Optimisation Settings

Settings for the optimisation. If you are unsure about them, then leave them at the default
values. Optimisation is by repeating a number of Levenberg-Marquardt iterations, in which the
equations are solved using a full multi-grid (FMG) scheme. FMG and Levenberg-Marquardt are
both described in Numerical Recipes (2nd edition).

LM Regularisation Levenberg-Marquardt regularisation. Larger values increase the the sta-
bility of the optimisation, but slow it down. A value of zero results in a Gauss-Newton strategy,
but this is not recommended as it may result in instabilities in the FMG.

Cycles Number of cycles used by the full multi-grid matrix solver. More cycles result in higher
accuracy, but slow down the algorithm. See Numerical Recipes for more information on multi-grid
methods.

Iterations Number of relaxation iterations performed in each multi-grid cycle. More iterations
are needed if using “bending energy” regularisation, because the relaxation scheme only runs very
slowly. See the chapter on solving partial differential equations in Numerical Recipes for more
information about relaxation methods.

25.4 Normalise to MNI Space

Normally, Dartel generates warped images that align with the average-shaped template. This
routine includes an initial affine regisration of the template (the final one generated by Dartel),
with the TPM data released with SPM.

“Smoothed” (blurred) spatially normalised images are generated in such a way that the original
signal is preserved. Normalised images are generated by a “pushing” rather than a “pulling” (the
usual) procedure. Note that a procedure related to trilinear interpolation is used, and no masking
is done. It is therefore recommended that the images are realigned and resliced before they are
spatially normalised, in order to benefit from motion correction using higher order interpolation.
Alternatively, contrast images generated from unsmoothed native-space fMRI/PET data can be
spatially normalised for a 2nd level analysis.

Two “preserve” options are provided. One of them should do the equavalent of generating
smoothed “modulated” spatially normalised images. The other does the equivalent of smoothing
the modulated normalised fMRI/PET, and dividing by the smoothed Jacobian determinants.

25.4.1 Dartel Template

Select the final Template file generated by Dartel. This will be affine registered with a TPM
file, such that the resulting spatially normalised images are closer aligned to MNI space. Leave
empty if you do not wish to incorporate a transform to MNI space (ie just click “done’ on the file
selector, without selecting any images).

25.4.2 Select according to

You may wish to spatially normalise only a few subjects, but have many scans per subject (eg
for fMRI), or you may have lots of subjects, but with a small and fixed number of scans for each
of them (eg for VBM). The idea is to chose the way of selecting files that is easier.

Few Subjects

Select this option if there are only a few subjects, each with many or a variable number of scans
each. You will then need to specify a series of subjects, and the flow field and images of each of
them.

Subject Subject to be spatially normalized.
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Flow Field Dartel flow field for this subject.
Images Images for this subject to spatially normalise.

Many Subjects

Select this option if you have many subjects to spatially normalise, but there are a small and
fixed number of scans for each subject.

Flow fields The flow fields store the deformation information. The same fields can be used for
both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Images The flow field deformations can be applied to multiple images. At this point, you are
choosing how many images each flow field should be applied to.

Images Select images to be warped. Note that there should be the same number of images
as there are flow fields, such that each flow field warps one image.

25.4.3 Voxel sizes

Specify the voxel sizes of the deformation field to be produced. Non-finite values will default to
the voxel sizes of the template imagethat was originally used to estimate the deformation.

25.4.4 Bounding box

Specify the bounding box of the deformation field to be produced. Non-finite values will default
to the bounding box of the template imagethat was originally used to estimate the deformation.

25.4.5 Preserve

Preserve Concentrations (no "modulation"): Smoothed spatially normalised images (sw*) repre-
sent weighted averages of the signal under the smoothing kernel, approximately preserving the
intensities of the original images. This option is currently suggested for eg fMRI.

Preserve Amount ("modulation"): Smoothed and spatially normalised images preserve the
total amount of signal from each region in the images (smw*). Areas that are expanded during
warping are correspondingly reduced in intensity. This option is suggested for VBM.

25.4.6 Gaussian FWHM

Specify the full-width at half maximum (FWHM) of the Gaussian blurring kernel in mm. Three
values should be entered, denoting the FWHM in the x, y and z directions. Note that you can
also specify [0 0 0], but any “modulated’ data will show aliasing (see eg Wikipedia), which occurs
because of the way the warped images are generated.

25.5 Create Warped

This allows spatially normalised images to be generated. Note that voxel sizes and bounding
boxes can not be adjusted, and that there may be strange effects due to the boundary conditions
used by the warping. Also note that the warped images are not in Talairach or MNI space.
The coordinate system is that of the average shape and size of the subjects to which Dartel was
applied. In order to have MNI-space normalised images, then the Deformations Utility can be
used to compose the individual Dartel warps, with a deformation field that matches (e.g.) the
Template grey matter generated by Dartel, with one of the grey matter volumes released with
SPM.
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25.5.1 Flow fields

The flow fields store the deformation information. The same fields can be used for both forward
or backward deformations (or even, in principle, half way or exaggerated deformations).

25.5.2 Images

The flow field deformations can be applied to multiple images. At this point, you are choosing
how many images each flow field should be applied to.

Images

Select images to be warped. Note that there should be the same number of images as there are
flow fields, such that each flow field warps one image.

25.5.3 Modulation

This allows the spatially normalised images to be rescaled by the Jacobian determinants of the
deformations. Note that the rescaling is only approximate for deformations generated using
smaller numbers of time steps.

25.5.4 Time Steps

The number of time points used for solving the partial differential equations. Note that Jacobian
determinants are not very accurate for very small numbers of time steps (less than about 16).

25.5.5 Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:

- Fastest, but not normally recommended.

Trilinear Interpolation:

- OK for PET, realigned fMRI, or segmentations

B-spline Interpolation:

- Better quality (but slower) interpolation [93], especially with higher degree splines. Can
produce values outside the original range (e.g. small negative values from an originally all positive
image).

25.6 Jacobian determinants

Create Jacobian determinant fields from flowfields.

25.6.1 Flow fields

The flow fields store the deformation information. The same fields can be used for both forward
or backward deformations (or even, in principle, half way or exaggerated deformations).

25.6.2 Time Steps

The number of time points used for solving the partial differential equations. Note that Jacobian
determinants are not very accurate for very small numbers of time steps (less than about 16).
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25.7 Create Inverse Warped

Create inverse normalised versions of some image(s). The image that is inverse-normalised should
be in alignment with the template (generated during the warping procedure). Note that the results
have the same dimensions as the “flow fields”, but are mapped to the original images via the affine
transformations in their headers.

25.7.1 Flow fields

The flow fields store the deformation information. The same fields can be used for both forward
or backward deformations (or even, in principle, half way or exaggerated deformations).

25.7.2 Images

Select the image(s) to be inverse normalised. These should be in alignment with the template
image of the warping procedure (Run Dartel).

25.7.3 Time Steps

The number of time points used for solving the partial differential equations. Note that Jacobian
determinants are not very accurate for very small numbers of time steps (less than about 16).

25.7.4 Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:

- Fastest, but not normally recommended.

Trilinear Interpolation:

- OK for PET, realigned fMRI, or segmentations

B-spline Interpolation:

- Better quality (but slower) interpolation [93], especially with higher degree splines. Can
produce values outside the original range (e.g. small negative values from an originally all positive
image).

25.8 Population to ICBM Registration

Estimate the mapping from the population average to ICBM space. This is achieved by aligning
the population average with grey and white matter tissue probability maps generated by Vladimir
Fonov of the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University

[20] -

25.8.1 Dartel Template
Select the final Template file generated by Dartel.

25.9 Kernel Utilities

Dartel can be used for generating matrices of dot-products for various kernel pattern-recognition
procedures.

The idea of applying pattern-recognition procedures is to obtain a multi-variate characteri-
sation of the anatomical differences among groups of subjects. These characterisations can then
be used to separate (eg) healthy individuals from particular patient populations. There is still a
great deal of methodological work to be done, so the types of kernel that can be generated here
are unlikely to be the definitive ways of proceeding. They are only just a few ideas that may be
worth trying out. The idea is simply to attempt a vaguely principled way to combine generative
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models with discriminative models (see the “Pattern Recognition and Machine Learning” book by
Chris Bishop for more ideas). Better ways (higher predictive accuracy) will eventually emerge.

Various pattern recognition algorithms are available freely over the Internet. Possible ap-
proaches include Support-Vector Machines, Relevance-Vector machines and Gaussian Process
Models. Gaussian Process Models probably give the most accurate probabilistic predictions, and
allow kernels generated from different pieces of data to be most easily combined.

25.9.1 Kernel from Images

Generate a kernel matrix from images. In principle, this same function could be used for gener-
ating kernels from any image data (e.g. “modulated” grey matter). If there is prior knowledge
about some region providing more predictive information (e.g. the hippocampi for AD), then it is
possible to weight the generation of the kernel accordingly. The matrix of dot-products is saved
in a variable “Phi”, which can be loaded from the dp_*.mat file. The “kernel trick” can be used
to convert these dot-products into distance measures for e.g. radial basis-function approaches.
Data

Select images to generate dot-products from.

Weighting image

The kernel can be generated so that some voxels contribute to the similarity measures more than
others. This is achieved by supplying a weighting image, which each of the component images are
multiplied before the dot-products are computed. This image needs to have the same dimensions
as the component images, but orientation information (encoded by matrices in the headers) is
ignored. If left empty, then all voxels are weighted equally.

Dot-product Filename

Enter a filename for results (it will be prefixed by “dp " and saved in the current directory).

25.9.2 Kernel from Flows

Generate a kernel from flow fields. The dot-products are saved in a variable “Phi” in the resulting
dp_*.mat file.

Flow fields

Select the flow fields for each subject.

Regularisation Form

The registration is penalised by some “energy” term. Here, the form of this energy term is
specified. Three different forms of regularisation can currently be used.

Reg params

For linear elasticity, the parameters are ‘mu’, ‘lambda’ and ‘id’. For membrane and bending
energy, the parameters are ‘lambda’, unused and ‘id’. The term ‘id’ is for penalising absolute
displacements, and should therefore be small.

Dot-product Filename

Enter a filename for results (it will be prefixed by “dp_” and saved in the current directory.
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This toolbox is based around the “Diffeomorphic Registration using Geodesic Shooting and
Gauss-Newton Optimisation” paper, which has been submitted to Neurolmage. The idea is to
register images by estimating an initial velocity field, which can then be integrated to generate
both forward and backward deformations. Currently, the software only works with images that
have isotropic voxels, identical dimensions and which are in approximate alignment with each
other. One of the reasons for this is that the approach assumes circulant boundary conditions,
which makes modelling global rotations impossible. Because of these limitations, the registration
should be based on images that have first been “imported” via the New Segment toolbox.

The next step is the registration itself, which involves the simultaneous registration of e.g. GM
with GM, WM with WM and 1-(GM+WM) with 1-(GM+WDM) (when needed, the 1-(GM+WM)
class is generated implicitly, so there is no need to include this class yourself). This procedure
begins by creating a mean of all the images, which is used as an initial template. Deformations
from this template to each of the individual images are computed, and the template is then
re-generated by applying the inverses of the deformations to the images and averaging. This
procedure is repeated a number of times.

This toolbox should be considered as only a beta (trial) version, and will include a number
of (as yet unspecified) extensions in future updates. Please report any bugs or problems to the
SPM mailing list.

26.1 Run Shooting (create Templates)
Run the geodesic shooting nonlinear image registration procedure. This involves iteratively

matching all the selected images to a template generated from their own mean. A series of
Template*.nii files are generated, which become increasingly crisp as the registration proceeds.

195
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26.1.1 Images

Select the images to be warped together. Multiple sets of images can be simultaneously registered.
For example, the first set may be a bunch of grey matter images, and the second set may be the
white matter images of the same subjects.

Images

Select a set of imported images of the same type to be registered by minimising a measure of
difference from the template.

26.2 Run Shoot (existing Templates)

Run the Shoot nonlinear image registration procedure to match individual images to pre-existing
template data. Start out with smooth templates, and select crisp templates for the later iterations.

26.2.1 Images

Select the images to be warped together. Multiple sets of images can be simultaneously registered.
For example, the first set may be a bunch of grey matter images, and the second set may be the
white matter images of the same subjects.

Images

Select a set of imported images of the same type to be registered by minimising a measure of
difference from the template.

26.2.2 Templates

Select templates. Smoother templates should be used for the early iterations. Note that the
template should be a 4D file, with the 4th dimension equal to the number of sets of images.

26.3 Kernel Utilities

Shoot can be used for generating matrices of dot-products for various kernel pattern-recognition
procedures.

The idea of applying pattern-recognition procedures is to obtain a multi-variate characteri-
sation of the anatomical differences among groups of subjects. These characterisations can then
be used to separate (eg) healthy individuals from particular patient populations. There is still a
great deal of methodological work to be done, so the types of kernel that can be generated here
are unlikely to be the definitive ways of proceeding. They are only just a few ideas that may be
worth trying out. The idea is simply to attempt a vaguely principled way to combine generative
models with discriminative models (see the “Pattern Recognition and Machine Learning” book by
Chris Bishop for more ideas). Better ways (higher predictive accuracy) will eventually emerge.

Various pattern recognition algorithms are available freely over the Internet. Possible ap-
proaches include Support-Vector Machines and Gaussian Process Models. Gaussian Process
Models probably give the most accurate probabilistic predictions, and allow kernels generated
from different pieces of data to be most easily combined.

26.3.1 Kernel from velocities

Generate a kernel from velocity fields. The dot-products are saved in a variable “K” in the
resulting dp_*.mat file.

Velocity fields

Select the velocity fields for each subject.
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Dot-product Filename

Enter a filename for results (it will be prefixed by “dp " and saved in the current directory.

26.3.2 (Generate Scalar Momenta

Generate spatially smoothed “scalar momenta” citesingh2010multivariate,singh2012genetic in a
form suitable for using with pattern recognition. In principle, a Gaussian Process model can be
used to determine the optimal (positive) linear combination of kernel matrices. The idea would
be to combine a kernel matrix derived from these, with a kernel derived from the velocity-fields.
Such a combined kernel should then encode more relevant information than the individual kernels
alone. The scalar momentum fields that are generated contain a number of volumes equal to the
number of sets of “rc*” images used (equal to the number of volumes in the template - 1). See
Figures 10 and 11 of [9] for examples of scalar momenta (Jacobian scaled residuals) for simulated
data.

Template

Residual differences are computed between the warped images and template. These are then
scaled by the Jacobian determinants at each point, and spatially smoothed.

Images

Multiple sets of images are used here. For example, the first set may be a bunch of grey matter
images, and the second set may be the white matter images of the same subjects. The number
of sets of images must be the same as was used to generate the template.

Images Select tissue class images (one per subject).

Deformation fields

Select the deformation fields for each subject.

Jacobian determinant fields

Select the Jacobian determinant fields for each subject. Residual differences are computed be-
tween the warped images and template. These are then scaled by the Jacobian determinants at
each point, and spatially smoothed.

Smoothing

The scalar momenta can be smoothed with a Gaussian to reduce dimensionality. More smoothing
is recommended if there are fewer training images or if more channels of data were used for driving
the registration. From preliminary experimants, a value of about 10mm seems to work reasonably
well.

26.3.3 Kernel from Images

Generate a kernel matrix from images. In principle, this same function could be used for gener-
ating kernels from any image data (e.g. “modulated” grey matter). If there is prior knowledge
about some region providing more predictive information (e.g. the hippocampi for AD), then it is
possible to weight the generation of the kernel accordingly. The matrix of dot-products is saved
in a variable “K”, which can be loaded from the dp *.mat file. The “kernel trick” can be used to
convert these dot-products into distance measures for e.g. radial basis-function approaches.

Data

Select images to generate dot-products from.
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Weighting image

The kernel can be generated so that some voxels contribute to the similarity measures more than
others. This is achieved by supplying a weighting image, which each of the component images are
multiplied before the dot-products are computed. This image needs to have the same dimensions
as the component images, but orientation information (encoded by matrices in the headers) is
ignored. If left empty, then all voxels are weighted equally.

Dot-product Filename

Enter a filename for results (it will be prefixed by “dp_” and saved in the current directory).
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27.1 Pairwise Longitudinal Registration

Longitudinal registration of pairs of anatomical MRI scans. It is based on pairwise inverse-
consistent alignment between the first and second scan of each subject, and incorporates a bias
field correction. Prior to running the registration, the scans should already be in very rough
alignment, although because the model incorporates a rigid-body transform, this need not be
extremely precise. Note that there are a bunch of hyper-parameters to be specified. If you are
unsure what values to take, then the defaults should be a reasonable guess of what works. Note
that changes to these hyper-parameters will impact the results obtained.

The alignment assumes that all scans have similar resolutions and dimensions, and were
collected on the same (or very similar) MR scanner using the same pulse sequence. If these

assumption are not correct, then the approach will not work as well.

199
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27.1.1 Time 1 Volumes

Select first time point scans of each subject.

27.1.2 Time 2 Volumes

Select second time point scans of each subject. Note that the order that the first and second time
points are specified should be the same. The algorithm does not incorporate any magical way of
figuring out which scans go together.

27.1.3 Time Difference

Specify the time difference between the scans in years. This can be a single value (if it is the
same for all subjects) or a vector of values (if it differs among subjects).

27.1.4 Noise Estimate

Specify the standard deviation of the noise in the images. If a scalar is entered, all images will
be assumed to have the same level of noise. For any non-finite values, the algorithm will try to
estimate reasonable noise estimates based on fitting a mixture of two Rician distributions to the
intensity histogram of each of the images. This works reasonably well for simple MRI scans, but
less well for derived images (such as averages). The assumption is that the residuals, after fitting
the registration model, are i.i.d. Gaussian.

27.1.5 Warping Regularisation

Registration involves simultaneously minimising two terms. One of these is a measure of similarity
between the images (mean-squared difference in the current situation), whereas the other is a
measure of the roughness of the deformations. This measure of roughness involves the sum of the
following terms:

* Absolute displacements need to be penalised by a tiny amount. The first element encodes
the amount of penalty on these. Ideally, absolute displacements should not be penalised, but it
is necessary for technical reasons.

* The ‘membrane energy’ of the deformation is penalised (2nd element), usually by a relatively
small amount. This penalises the sum of squares of the derivatives of the velocity field (ie the
sum of squares of the elements of the Jacobian tensors).

* The ‘bending energy’ is penalised (3rd element). This penalises the sum of squares of the
2nd derivatives of the velocity.

* Linear elasticity regularisation is also included (4th and 5th elements). The first parameter
(mu) is similar to that for linear elasticity, except it penalises the sum of squares of the Jacobian
tensors after they have been made symmetric (by averaging with the transpose). This term
essentially penalises length changes, without penalising rotations.

* The final term also relates to linear elasticity, and is the weight that denotes how much to
penalise changes to the divergence of the velocities (lambda). This divergence is a measure of the
rate of volumetric expansion or contraction.

Note that regularisation is specified based on what is believed to be appropriate for a year of
growth. The specified values are divided by the number of years time difference.

27.1.6 Bias Regularisation

MR images are usually corrupted by a smooth, spatially varying artifact that modulates the
intensity of the image (bias). These artifacts, although not usually a problem for visual inspection,
can impede automated processing of the images.

An important issue relates to the distinction between variations in the difference between the
images that arise because of the differential bias artifact due to the physics of MR scanning, and
those that arise due to shape differences. The objective is to model the latter by deformations,
while modelling the former with a bias field. We know a priori that intensity variations due to
MR physics tend to be spatially smooth. A more accurate estimate of a bias field can be obtained
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by including prior knowledge about the distribution of the fields likely to be encountered by the
correction algorithm. For example, if it is known that there is little or no intensity non-uniformity,
then it would be wise to penalise large estimates of the intensity non-uniformity.

Knowing what works best should be a matter of empirical exploration, as it depends on
the scans themselves. For example, if your data has very little of the artifact, then the bias
regularisation should be increased. This effectively tells the algorithm that there is very little
bias in your data, so it does not try to model it.

27.1.7 Save Mid-point average

Do you want to save the mid-point average template image? This is likely to be useful for
groupwise alignment, and is prefixed by “avg_” and written out in the same directory of the first
time point data.

27.1.8 Save Jacobian Rate

Do you want to save a map of the differences between the Jacobian determinants, divided by
the time interval? Some consider these useful for morphometrics (although the divergences of
the initial velocities may be preferable). The difference between two Jacobian determinants
is computed and this is divided by the time interval. One original Jacobian map is for the
deformation from the mid point to the first scan, and the other is for the deformation from the
mid point to the second scan. Each of these encodes the relative volume (at each spatial location)
between the scan and the mid-point average. Values less than 0 indicate contraction (over time),
whereas values greater than zero indicate expansion. These files are prefixed by “jd_” and written
out in the same directory of the first time point data.

27.1.9 Save Divergence Rate

Do you want to save a map of divergence of the velocity field? This is useful for morphometrics,
and may be considered as the rate of volumetric expansion. Negative values indicate contraction.
These files are prefixed by “dv_" and written out in the same directory of the first time point
data. Note that the divergences written out have been divided by the time interval between scans

27.1.10 Deformation Fields

Deformation fields can be saved to disk, and used by the Deformations Utility. Deformations are
saved as y_*.nii files, which contain three volumes to encode the x, y and z coordinates. They
are written in the same directory as the corresponding image.

27.2 Serial Longitudinal Registration

Longitudinal registration of series of anatomical MRI scans for a single subject. It is based on
groupwise alignment among each of the subject’s scans, and incorporates a bias field correction.
Prior to running the registration, the scans should already be in very rough alignment, although
because the model incorporates a rigid-body transform, this need not be extremely precise. Note
that there are a bunch of hyper-parameters to be specified. If you are unsure what values to
take, then the defaults should be a reasonable guess of what works. Note that changes to these
hyper-parameters will impact the results obtained.

The alignment assumes that all scans have similar resolutions and dimensions, and were
collected on the same (or very similar) MR scanner using the same pulse sequence. If these
assumption are not correct, then the approach will not work as well. There are a number of
settings (noise estimate, regularisation etc). Default settings often work well, but it can be very
helpful to try some different values, as these can have a large effect on the results.

27.2.1 Volumes

Select scans for this subject.
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27.2.2 Times

Specify the times of the scans in years.

27.2.3 Noise Estimate

Specify the standard deviation of the noise in the images. If a scalar is entered, all images will
be assumed to have the same level of noise. For any non-finite values, the algorithm will try to
estimate reasonable noise estimates based on fitting a mixture of two Rician distributions to the
intensity histogram of each of the images. This works reasonably well for simple MRI scans, but
less well for derived images (such as averages). The assumption is that the residuals, after fitting
the registration model, are i.i.d. Gaussian.

27.2.4 Warping Regularisation

Registration involves simultaneously minimising two terms. One of these is a measure of similarity
between the images (mean-squared difference in the current situation), whereas the other is a
measure of the roughness of the deformations. This measure of roughness involves the sum of the
following terms:

* Absolute displacements need to be penalised by a tiny amount. The first element encodes
the amount of penalty on these. Ideally, absolute displacements should not be penalised, but it
is necessary for technical reasons.

* The ‘membrane energy’ of the deformation is penalised (2nd element), usually by a relatively
small amount. This penalises the sum of squares of the derivatives of the velocity field (ie the
sum of squares of the elements of the Jacobian tensors).

* The ‘bending energy’ is penalised (3rd element). This penalises the sum of squares of the
2nd derivatives of the velocity.

* Linear elasticity regularisation is also included (4th and 5th elements). The first parameter
(mu) is similar to that for linear elasticity, except it penalises the sum of squares of the Jacobian
tensors after they have been made symmetric (by averaging with the transpose). This term
essentially penalises length changes, without penalising rotations.

* The final term also relates to linear elasticity, and is the weight that denotes how much to
penalise changes to the divergence of the velocities (lambda). This divergence is a measure of the
rate of volumetric expansion or contraction.

Note that regularisation is specified based on what is believed to be appropriate for a year of
growth. The specified values are divided by the number of years time difference.

27.2.5 Bias Regularisation

MR images are usually corrupted by a smooth, spatially varying artifact that modulates the
intensity of the image (bias). These artifacts, although not usually a problem for visual inspection,
can impede automated processing of the images.

An important issue relates to the distinction between variations in the difference between the
images that arise because of the differential bias artifact due to the physics of MR scanning, and
those that arise due to shape differences. The objective is to model the latter by deformations,
while modelling the former with a bias field. We know a priori that intensity variations due to
MR physics tend to be spatially smooth. A more accurate estimate of a bias field can be obtained
by including prior knowledge about the distribution of the fields likely to be encountered by the
correction algorithm. For example, if it is known that there is little or no intensity non-uniformity,
then it would be wise to penalise large estimates of the intensity non-uniformity.

Knowing what works best should be a matter of empirical exploration, as it depends on
the scans themselves. For example, if your data has very little of the artifact, then the bias
regularisation should be increased. This effectively tells the algorithm that there is very little
bias in your data, so it does not try to model it.
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27.2.6 Save Mid-point average

Do you want to save the mid-point average template image? This is likely to be useful for
groupwise alignment, and is prefixed by “avg " and written out in the same directory of the first
time point data.

27.2.7 Save Jacobians

Do you want to save a map of the Jacobian determinants? Some consider these useful for mor-
phometrics (although the divergences of the initial velocities may be preferable). Each map of
Jacobians encodes the relative volume (at each spatial location) between the scan and the me-
dian time-point average. Values less than one indicate contraction (over time), whereas values
greater than one indicate expansion. These files are prefixed by “j 7 and written out in the same
directory of the first time point data.

27.2.8 Save Divergence

Do you want to save a map of divergence of the velocity field? This is useful for morphometrics,
and may be considered as the rate of volumetric expansion. Negative values indicate contraction.
These files are prefixed by “dv_" and written out in the same directory of the first time point
data.

27.2.9 Deformation Fields

Deformation fields can be saved to disk, and used by the Deformations Utility. Deformations are
saved as y_*.nii files, which contain three volumes to encode the x, y and z coordinates. They
are written in the same directory as the corresponding image.
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This very ancient module spatially (stereotactically) normalises MRI, PET or SPECT images
into a standard space defined by some ideal model or template image[s]. The template images
supplied with SPM conform to the space defined by the ICBM, NIH P-20 project, and approximate
that of the the space described in the atlas of Talairach and Tournoux (1988). The transformation
can also be applied to any other image that has been coregistered with these scans. A few
researchers may wish to continue using this strategy, but (when good quality anatomical MRI
scans are available) the DARTEL approach is now generally recommended instead.

Generally, the algorithms work by minimising the sum of squares difference between the image
which is to be normalised, and a linear combination of one or more template images. For the
least squares registration to produce an unbiased estimate of the spatial transformation, the image
contrast in the templates (or linear combination of templates) should be similar to that of the
image from which the spatial normalisation is derived. The registration simply searches for an
optimum solution. If the starting estimates are not good, then the optimum it finds may not find
the global optimum.

The first step of the normalisation is to determine the optimum 12-parameter affine transfor-
mation. Initially, the registration is performed by matching the whole of the head (including the
scalp) to the template. Following this, the registration proceeded by only matching the brains
together, by appropriate weighting of the template voxels. This is a completely automated pro-
cedure (that does not require “scalp editing’) that discounts the confounding effects of skull and
scalp differences. A Bayesian framework is used, such that the registration searches for the so-
lution that maximises the a posteriori probability of it being correct [L0] . i.e., it maximises the
product of the likelihood function (derived from the residual squared difference) and the prior
function (which is based on the probability of obtaining a particular set of zooms and shears).

The affine registration is followed by estimating nonlinear deformations, whereby the defor-
mations are defined by a linear combination of three dimensional discrete cosine transform (DCT)
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basis functions [5] . The default options result in each of the deformation fields being described
by 1176parameters, where these represent the coefficients of the deformations in three orthogo-
nal directions. The matching involved simultaneously minimising the membrane energies of the
deformation fields and the residual squared difference between the images and template(s).

The primarily use is for stereotactic normalisation to facilitate inter-subject averaging and
precise characterisation of functional anatomy [4] . It is not necessary to spatially normalise the
data (this is only a pre-requisite for inter-subject averaging or reporting in the Talairach space).
If you wish to circumnavigate this step (e.g. if you have single slice data or do not have an
appropriate high resolution MRI scan) simply specify where you think the anterior commissure is
with the ORIGIN in the header of the first scan (using the 'Display’ facility) and proceed directly
to ’Smoothing’or ’Statistics’.

All normalised images are written to the same subdirectory as the original images, prefixed
with a 'w’. The details of the transformations are displayed in the results window, and the
parameters are saved in the "* sn.mat" file.

28.1 Old Normalise: Estimate

Computes the warp that best registers a source image (or series of source images) to match a
template, saving it to a file imagename’ sn.mat’.

28.1.1 Data

List of subjects. Images of each subject should be warped differently.

Subject

Data for this subject. The same parameters are used within subject.

Source Image The image that is warped to match the template(s). The result is a set of
warps, which can be applied to this image, or any other image that is in register with it.

Source Weighting Image Optional weighting images (consisting of pixel values between the
range of zero to one) to be used for registering abnormal or lesioned brains. These images should
match the dimensions of the image from which the parameters are estimated, and should contain
zeros corresponding to regions of abnormal tissue.

28.1.2 Estimation Options

Various settings for estimating warps.

Template Image

Specify a template image to match the source image with. The contrast in the template must be
similar to that of the source image in order to achieve a good registration. It is also possible to
select more than one template, in which case the registration algorithm will try to find the best
linear combination of these images in order to best model the intensities in the source image.

Template Weighting Image

Applies a weighting mask to the template(s) during the parameter estimation. With the default
brain mask, weights in and around the brain have values of one whereas those clearly outside the
brain are zero. This is an attempt to base the normalisation purely upon the shape of the brain,
rather than the shape of the head (since low frequency basis functions can not really cope with
variations in skull thickness).

The option is now available for a user specified weighting image. This should have the same
dimensions and mat file as the template images, with values in the range of zero to one.
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Source Image Smoothing

Smoothing to apply to a copy of the source image. The template and source images should have
approximately the same smoothness. Remember that the templates supplied with SPM have
been smoothed by 8mm, and that smoothnesses combine by Pythagoras’ rule.

Template Image Smoothing

Smoothing to apply to a copy of the template image. The template and source images should
have approximately the same smoothness. Remember that the templates supplied with SPM
have been smoothed by 8mm, and that smoothnesses combine by Pythagoras’ rule.

Affine Regularisation

Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). If registering to an image in ICBM/MNI space, then
choose the first option. If registering to a template that is close in size, then select the second
option. If you do not want to regularise, then choose the third.

Nonlinear Frequency Cutoff

Cutoff of DCT bases. Only DCT bases of periods longer than the cutoff are used to describe the
warps. The number used will depend on the cutoff and the field of view of the template image(s).

Nonlinear Iterations

Number of iterations of nonlinear warping performed.

Nonlinear Regularisation

The amount of regularisation for the nonlinear part of the spatial normalisation. Pick a value
around one. However, if your normalised images appear distorted, then it may be an idea to
increase the amount of regularisation (by an order of magnitude) - or even just use an affine
normalisation. The regularisation influences the smoothness of the deformation fields.

28.2 0Old Normalise: Write

Allows previously estimated warps (stored in imagename’ sn.mat’ files) to be applied to series
of images.

28.2.1 Data

List of subjects. Images of each subject should be warped differently.

Subject
Data for this subject. The same parameters are used within subject.

Parameter File Select the ’ sn.mat’ file containing the spatial normalisation parameters for
that subject.

Images to Write These are the images for warping according to the estimated parameters.
They can be any images that are in register with the "source" image used to generate the param-
eters.
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28.2.2 Writing Options

Various options for writing normalised images.

Preserve

Preserve Concentrations: Spatially normalised images are not "modulated". The warped images
preserve the intensities of the original images.

Preserve Total: Spatially normalised images are "modulated" in order to preserve the total
amount of signal in the images. Areas that are expanded during warping are correspondingly
reduced in intensity.

Bounding box

The bounding box (in mm) of the volume which is to be written (relative to the anterior com-
missure).

Voxel sizes

The voxel sizes (x, y & z, in mm) of the written normalised images.

Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:

- Fastest, but not normally recommended.

Trilinear Interpolation:

- OK for PET, realigned fMRI, or segmentations

B-spline Interpolation:

- Better quality (but slower) interpolation [93], especially with higher degree splines. Can
produce values outside the original range (e.g. small negative values from an originally all positive
image).

Wrapping
These are typically:
No wrapping: for PET or images that have already been spatially transformed.
Wrap in Y: for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Filename Prefix

Specify the string to be prepended to the filenames of the normalised image file(s). Default prefix
is 'w’.

28.3 O0OIld Normalise: Estimate & Write

Computes the warp that best registers a source image (or series of source images) to match a
template, saving it to the file imagename’ sn.mat’. This option also allows the contents of the
imagename’ _sn.mat’ files to be applied to a series of images.

28.3.1 Data

List of subjects. Images of each subject should be warped differently.

Subject

Data for this subject. The same parameters are used within subject.
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Source Image The image that is warped to match the template(s). The result is a set of
warps, which can be applied to this image, or any other image that is in register with it.

Source Weighting Image Optional weighting images (consisting of pixel values between the
range of zero to one) to be used for registering abnormal or lesioned brains. These images should
match the dimensions of the image from which the parameters are estimated, and should contain
zeros corresponding to regions of abnormal tissue.

Images to Write These are the images for warping according to the estimated parameters.
They can be any images that are in register with the "source" image used to generate the param-
eters.

28.3.2 Estimation Options

Various settings for estimating warps.

Template Image

Specify a template image to match the source image with. The contrast in the template must be
similar to that of the source image in order to achieve a good registration. It is also possible to
select more than one template, in which case the registration algorithm will try to find the best
linear combination of these images in order to best model the intensities in the source image.

Template Weighting Image

Applies a weighting mask to the template(s) during the parameter estimation. With the default
brain mask, weights in and around the brain have values of one whereas those clearly outside the
brain are zero. This is an attempt to base the normalisation purely upon the shape of the brain,
rather than the shape of the head (since low frequency basis functions can not really cope with
variations in skull thickness).

The option is now available for a user specified weighting image. This should have the same
dimensions and mat file as the template images, with values in the range of zero to one.

Source Image Smoothing

Smoothing to apply to a copy of the source image. The template and source images should have
approximately the same smoothness. Remember that the templates supplied with SPM have
been smoothed by 8mm, and that smoothnesses combine by Pythagoras’ rule.

Template Image Smoothing

Smoothing to apply to a copy of the template image. The template and source images should
have approximately the same smoothness. Remember that the templates supplied with SPM
have been smoothed by 8mm, and that smoothnesses combine by Pythagoras’ rule.

Affine Regularisation

Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). If registering to an image in ICBM/MNI space, then
choose the first option. If registering to a template that is close in size, then select the second
option. If you do not want to regularise, then choose the third.

Nonlinear Frequency Cutoff

Cutoff of DCT bases. Only DCT bases of periods longer than the cutoff are used to describe the
warps. The number used will depend on the cutoff and the field of view of the template image(s).
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Nonlinear Iterations

Number of iterations of nonlinear warping performed.

Nonlinear Regularisation

The amount of regularisation for the nonlinear part of the spatial normalisation. Pick a value
around one. However, if your normalised images appear distorted, then it may be an idea to
increase the amount of regularisation (by an order of magnitude) - or even just use an affine
normalisation. The regularisation influences the smoothness of the deformation fields.

28.3.3 Writing Options

Various options for writing normalised images.

Preserve

Preserve Concentrations: Spatially normalised images are not "modulated". The warped images
preserve the intensities of the original images.

Preserve Total: Spatially normalised images are "modulated" in order to preserve the total
amount of signal in the images. Areas that are expanded during warping are correspondingly
reduced in intensity.

Bounding box

The bounding box (in mm) of the volume which is to be written (relative to the anterior com-
missure).

Voxel sizes

The voxel sizes (x, y & z, in mm) of the written normalised images.

Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:

- Fastest, but not normally recommended.

Trilinear Interpolation:

- OK for PET, realigned fMRI, or segmentations

B-spline Interpolation:

- Better quality (but slower) interpolation [93], especially with higher degree splines. Can
produce values outside the original range (e.g. small negative values from an originally all positive
image).

Wrapping

These are typically:
No wrapping: for PET or images that have already been spatially transformed.
Wrap in Y: for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Filename Prefix

Specify the string to be prepended to the filenames of the normalised image file(s). Default prefix
is 'w’.
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Segment, bias correct and spatially normalise - all in the same model [8]. This function
can be used for bias correcting, spatially normalising or segmenting your data. Note that this
module needs the images to be roughly aligned with the tissue probability maps before you
begin. If strange results are obtained, then this is usually because the images were poorly aligned
beforehand. The Display option can be used to manually reposition the images so that the AC
is close to coordinate 0,0,0 (within a couple of cm) and the orientation is within a few degrees of
the tissue probability map data.

Many investigators use tools within older versions of SPM for a technique that has become
known as "optimised" voxel-based morphometry (VBM). VBM performs region-wise volumetric
comparisons among populations of subjects. It requires the images to be spatially normalised,
segmented into different tissue classes, and smoothed, prior to performing statistical tests [98,

, 6, 7]. The "optimised" pre-processing strategy involved spatially normalising subjects’ brain
images to a standard space, by matching grey matter in these images, to a grey matter reference.
The historical motivation behind this approach was to reduce the confounding effects of non-brain
(e.g. scalp) structural variability on the registration. Tissue classification in older versions of SPM
required the images to be registered with tissue probability maps. After registration, these maps
represented the prior probability of different tissue classes being found at each location in an
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image. Bayes rule can then be used to combine these priors with tissue type probabilities derived
from voxel intensities, to provide the posterior probability.

This procedure was inherently circular, because the registration required an initial tissue clas-
sification, and the tissue classification requires an initial registration. This circularity is resolved
here by combining both components into a single generative model. This model also includes
parameters that account for image intensity non-uniformity. Estimating the model parameters
(for a maximum a posteriori solution) involves alternating among classification, bias correction
and registration steps. This approach provides better results than simple serial applications of
each component.

Note that multi-spectral segmentation (e.g. from a registered T1 and T2 image) is not yet
implemented, but is planned for a future SPM version.

29.1 Data

Select scans for processing. This assumes that there is one scan for each subject. Note that
multi-spectral (when there are two or more registered images of different contrasts) processing is
not yet implemented for this method.

29.2 Output Files

This routine produces spatial normalisation parameters (* _seg sn.mat files) by default. These
can be used for writing spatially normalised versions of your data, via the "Normalise: Write"
option. This mechanism may produce superior results than the "Normalise: Estimate" option
(but probably not as good as those produced using DARTEL).

In addition, it also produces files that can be used for doing inverse normalisation. If you
have an image of regions defined in the standard space, then the inverse deformations can be
used to warp these regions so that it approximately overlay your image. To use this facility, the
bounding-box and voxel sizes should be set to non-finite values (e.g. [NaN NaN NaN] for the voxel
sizes, and ones(2,3)*NaN for the bounding box. This would be done by the spatial normalisation
module, which allows you to select a set of parameters that describe the nonlinear warps, and
the images that they should be applied to.

There are a number of options about what data you would like the routine to produce. The
routine can be used for producing images of tissue classes, as well as bias corrected images. The
native space option will produce a tissue class image (c*) that is in alignment with the original (see
Figure 29.1). You can also produce spatially normalised versions - both with (mwc*) and without
(wc*) modulation (see Figure 29.2). The bounding box and voxel sizes of the spatially normalised
versions are the same as that of the tissue probability maps with which they are registered. These
can be used for doing voxel-based morphometry with (also see the “Using DARTEL’ chapter of
the manual). All you need to do is smooth them and do the stats (which means no more questions
on the mailing list about how to do "optimized VBM").

Modulation is to compensate for the effect of spatial normalisation. When warping a series
of images to match a template, it is inevitable that volumetric differences will be introduced into
the warped images. For example, if one subject’s temporal lobe has half the volume of that of
the template, then its volume will be doubled during spatial normalisation. This will also result
in a doubling of the voxels labelled grey matter. In order to remove this confound, the spatially
normalised grey matter (or other tissue class) is adjusted by multiplying by its relative volume
before and after warping. If warping results in a region doubling its volume, then the correction
will halve the intensity of the tissue label. This whole procedure has the effect of preserving the
total amount of grey matter signal in the normalised partitions.

A deformation field is a vector field, where three values are associated with each location in
the field. The field maps from co-ordinates in the normalised image back to co-ordinates in the
original image. The value of the field at co-ordinate [x y z| in the normalised space will be the
co-ordinate [x’ y’ z’| in the original volume. The gradient of the deformation field at a co-ordinate
is its Jacobian matrix, and it consists of a 3x3 matrix:
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Figure 29.1: Segmentation results. These are the results that can be obtained in the original
space of the image (i.e. the results that are not spatially normalised). Top left: original image
(X.img). Top right: bias corrected image (mX.img). Middle and bottom rows: segmented grey
matter (c1X.img), white matter (c2X.img) and CSF (c3X.img).
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Figure 29.2: Segmentation results. These are the spatially normalised results that can be obtained
(note that CSF data is not shown). Top row: The tissue probability maps used to guide the
segmentation. Middle row: Spatially normalised tissue maps of grey and white matter (wclX.img
and wc2X.img). Bottom row: Modulated spatially normalised tissue maps of grey and white
matter (mwclX.img and mwc2X.img).
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iz dy  d-

The value of dx’/dy is a measure of how much x’ changes if y is changed by a tiny amount.
The determinant of the Jacobian is the measure of relative volumes of warped and unwarped
structures. The modulation step simply involves multiplying by the relative volumes (see Figure
29.2).

29.2.1 Grey Matter

Options to produce grey matter images: c1*, wel* and mwcl*.

29.2.2 White Matter

Options to produce white matter images: c2*, wc2* and mwc2*.

29.2.3 Cerebro-Spinal Fluid

Options to produce CSF images: ¢3*, we3* and mwe3*.

29.2.4 Bias Corrected

This is the option to produce a bias corrected version of your image. MR images are usually
corrupted by a smooth, spatially varying artifact that modulates the intensity of the image (bias).
These artifacts, although not usually a problem for visual inspection, can impede automated
processing of the images. The bias corrected version should have more uniform intensities within
the different types of tissues.

29.2.5 Clean up any partitions

This uses a crude routine for extracting the brain from segmentedimages. It begins by taking the
white matter, and eroding it acouple of times to get rid of any odd voxels. The algorithmcontinues
on to do conditional dilations for several iterations,where the condition is based upon gray or white
matter being present.This identified region is then used to clean up the grey and whitematter
partitions, and has a slight influences on the CSF partition.

If you find pieces of brain being chopped out in your data, then you may wish to disable or
tone down the cleanup procedure.

29.3 Custom

Various options can be adjusted in order to improve the performance of the algorithm with your
data. Knowing what works best should be a matter of empirical exploration. For example, if
your data has very little intensity non-uniformity artifact, then the bias regularisation should be
increased. This effectively tells the algorithm that there is very little bias in your data, so it does
not try to model it.

29.3.1 Tissue probability maps

Select the tissue probability images. These should be maps of grey matter, white matter and
cerebro-spinal fluid probability. A nonlinear deformation field is estimated that best overlays the
tissue probability maps on the individual subjects’ image. The default tissue probability maps
are modified versions of the ICBM Tissue Probabilistic Atlases.These tissue probability maps
are kindly provided by the International Consortium for Brain Mapping, John C. Mazziotta and
Arthur W. Toga. http://www.loni.ucla.edu/ICBM/ICBM _TissueProb.html. The original data
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are derived from 452 T1-weighted scans, which were aligned with an atlas space, corrected for
scan inhomogeneities, and classified into grey matter, white matter and cerebrospinal fluid. These
data were then affine registered to the MNI space and downsampled to 2mm resolution.

Rather than assuming stationary prior probabilities based upon mixing proportions, additional
information is used, based on other subjects’ brain images. Priors are usually generated by
registering a large number of subjects together, assigning voxels to different tissue types and
averaging tissue classes over subjects. Three tissue classes are used: grey matter, white matter
and cerebro-spinal fluid. A fourth class is also used, which is simply one minus the sum of the
first three. These maps give the prior probability of any voxel in a registered image being of any
of the tissue classes - irrespective of its intensity.

The model is refined further by allowing the tissue probability maps to be deformed according
to a set of estimated parameters. This allows spatial normalisation and segmentation to be
combined into the same model. This implementation uses a low-dimensional approach, which
parameterises the deformations by a linear combination of about a thousand cosine transform
bases. This is not an especially precise way of encoding deformations, but it can model the
variability of overall brain shape. Evaluations by Hellier et al have shown that this simple model
can achieve a registration accuracy comparable to other fully automated methods with many
more parameters.

29.3.2 Gaussians per class

The number of Gaussians used to represent the intensity distribution for each tissue class can be
greater than one. In other words, a tissue probability map may be shared by several clusters.
The assumption of a single Gaussian distribution for each class does not hold for a number of
reasons. In particular, a voxel may not be purely of one tissue type, and instead contain signal
from a number of different tissues (partial volume effects). Some partial volume voxels could fall
at the interface between different classes, or they may fall in the middle of structures such as the
thalamus, which may be considered as being either grey or white matter. Various other image
segmentation approaches use additional clusters to model such partial volume effects. These
generally assume that a pure tissue class has a Gaussian intensity distribution, whereas intensity
distributions for partial volume voxels are broader, falling between the intensities of the pure
classes. Unlike these partial volume segmentation approaches, the model adopted here simply
assumes that the intensity distribution of each class may not be Gaussian, and assigns belonging
probabilities according to these non-Gaussian distributions. Typical numbers of Gaussians could
be two for grey matter, two for white matter, two for CSF, and four for everything else.

29.3.3 Affine Regularisation

The procedure is a local optimisation, so it needs reasonable initial starting estimates. Images
should be placed in approximate alignment using the Display function of SPM before beginning.
A Mutual Information affine registration with the tissue probability maps (D’Agostino et al,
2004) is used to achieve approximate alignment. Note that this step does not include any model
for intensity non-uniformity. This means that if the procedure is to be initialised with the affine
registration, then the data should not be too corrupted with this artifact.If there is a lot of
intensity non-uniformity, then manually position your image in order to achieve closer starting
estimates, and turn off the affine registration.

Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). For example, if registering to an image in ICBM/MNI
space, then choose this option. If registering to a template that is close in size, then select the
appropriate option for this.

29.3.4 Warping Regularisation

The objective function for registering the tissue probability maps to the image to process, in-
volves minimising the sum of two terms. One term gives a function of how probable the data
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is given the warping parameters. The other is a function of how probable the parameters are,
and provides a penalty for unlikely deformations. Smoother deformations are deemed to be more
probable. The amount of regularisation determines the tradeoff between the terms. Pick a value
around one. However, if your normalised images appear distorted, then it may be an idea to
increase the amount of regularisation (by an order of magnitude). More regularisation gives
smoother deformations, where the smoothness measure is determined by the bending energy of
the deformations.

29.3.5 Warp Frequency Cutoff

Cutoff of DCT bases. Only DCT bases of periods longer than the cutoff are used to describe the
warps. The number actually used will depend on the cutoff and the field of view of your image. A
smaller cutoff frequency will allow more detailed deformations to be modelled, but unfortunately
comes at a cost of greatly increasing the amount of memory needed, and the time taken.

29.3.6 Bias regularisation

MR images are usually corrupted by a smooth, spatially varying artifact that modulates the
intensity of the image (bias). These artifacts, although not usually a problem for visual inspection,
can impede automated processing of the images.

An important issue relates to the distinction between intensity variations that arise because
of bias artifact due to the physics of MR scanning, and those that arise due to different tissue
properties. The objective is to model the latter by different tissue classes, while modelling the
former with a bias field. We know a priori that intensity variations due to MR physics tend
to be spatially smooth, whereas those due to different tissue types tend to contain more high
frequency information. A more accurate estimate of a bias field can be obtained by including prior
knowledge about the distribution of the fields likely to be encountered by the correction algorithm.
For example, if it is known that there is little or no intensity non-uniformity, then it would be
wise to penalise large values for the intensity non-uniformity parameters. This regularisation can
be placed within a Bayesian context, whereby the penalty incurred is the negative logarithm of a
prior probability for any particular pattern of non-uniformity.

29.3.7 Bias FWHM

FWHM of Gaussian smoothness of bias. If your intensity non-uniformity is very smooth, then
choose a large FWHM. This will prevent the algorithm from trying to model out intensity variation
due to different tissue types. The model for intensity non-uniformity is one of i.i.d. Gaussian
noise that has been smoothed by some amount, before taking the exponential. Note also that
smoother bias fields need fewer parameters to describe them. This means that the algorithm is
faster for smoother intensity non-uniformities.

29.3.8 Sampling distance

The approximate distance between sampled points when estimating the model parameters. Smaller
values use more of the data, but the procedure is slower.

29.3.9 Masking image

The segmentation can be masked by an image that conforms to the same space as the images
to be segmented. If an image is selected, then it must match the image(s) voxel-for voxel, and
have the same voxel-to-world mapping. Regions containing a value of zero in this image do not
contribute when estimating the various parameters.
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Part VII

Data sets and examples
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Chapter 30

Auditory fMRI data

This experiment was conducted by Geraint Rees under the direction of Karl Friston and the FIL
methods group. The purpose was to explore equipment and techniques in the early days of our
fMRI experience. As such, it has not been formally written up, and is freely available for personal
education and evaluation purposes.

This data set was the first ever collected and analysed in the Functional Imaging Laboratory
(FIL) and is known locally as the mother of all experiments (MoAE).

This data set comprises whole brain BOLD/EPI images acquired on a modified 2T Siemens
MAGNETOM Vision system. FEach acquisition consisted of 64 contiguous slices (64x64x64

3x3x3 mm? voxels). Acquisition took 6.05s, with the scan to scan repeat time (TR) set arbitrarily
to 7s.

96 acquisitions were made (TR=Ts) from a single subject, in blocks of 6, giving 16 42s blocks.
The condition for successive blocks alternated between rest and auditory stimulation, starting
with rest. Auditory stimulation was bi-syllabic words presented binaurally at a rate of 60 per
minute. The functional data starts at acquisition 4, image £M00223_004.{hdr,img}, and are
stored in folder £M00223. Due to T1 effects it is advisable to discard the first few scans (there
were no “dummy” lead-in scans). A structural image was also acquired: sM00223_002.{hdr,img},
stored in folder sM00223. These images are stored in Analyze format (now superseded by the
NIfTT format, but SPM reads natively both formats and always saves images as NIfTT) and are
available from the SPM site !.

To analyse the data, first create a new directory DIR, eg. C:\data\auditory, in which to place
the results of your analysis. Then create 3 subdirectories (i) dummy, (ii) jobs and (iii) classical.
As the analysis proceeds these directories will be filled with dummy scans, job-specification files,
design matrices and models estimated using classical inference.

Start up MATLAB enter your jobs directory and type spm fmri at the MATLAB prompt.
SPM will then open in fMRI mode with three windows (see Figure 30.1): (1) the top-left or
“Menu” window, (2) the bottom-left or “Interactive” window and (3) the right-hand or “Graphics”
window. Analysis then takes place in three major stages (i) spatial pre-processing, (ii) model
specification, review and estimation and (iii) inference. These stages organise the buttons in
SPM’s Menu window.

30.1 Preamble (dummy scans)

To avoid T1 effects in the initial scans of an fMRI time series we recommend discarding the first
few scans. To make this example simple, we’ll discard the first complete cycle (12 scans, 04-15),
leaving 84 scans, image files 16-99. This is best done by moving these files to a different directory,
dummy, that we created earlier.

L Auditory fMRI dataset: http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
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Figure 30.1: The SPM base window comprises three sections i) spatial pre-processing, (i) model
specification, review and estimation and (iii) inference.



30.2. SPATIAL PRE-PROCESSING 223

30.2 Spatial pre-processing

30.2.1 Realignment

Under the spatial pre-processing section of the SPM Menu window select REALIGN (EST & RES)
from the REALIGN pulldown menu. This will call up a realignment job specification in the batch
editor. Then

e Highlight “Data”, select “New Session”, then highlight the newly created “Session” option.

e Press “Select Files” and use the SPM file selector to choose all of the functional images eg.
(“£MO00%* . img”). There should be 84 files.

Press “Resliced images” in the “Reslice Options” and select “Mean Image Only”.
e Save the job file as eg. DIR\ jobs\realign.mat.
e Press the RUN button in the batch editor (green arrow).

This will run the realign job which will estimate the 6 parameter (rigid body) spatial transfor-
mation that will align the times series of images and will modify the header of the input images
(*.hdr), such that they reflect the relative orientation of the data after correction for movement
artefacts. SPM will then plot the estimated time series of translations and rotations shown in
Figure 30.2. These data are also saved to a file eg. rp_fM00223_016.txt, so that these vari-
ables can be later used as regressors when fitting GLMs. This allows movements effects to be
discounted when looking for brain activations.

SPM will also create a mean image eg. meanfM00223_016.img which will be used in the next
step of spatial processing - coregistration.

30.2.2 Coregistration

Select COREGISTER (ESTIMATE) from the COREGISTER pulldown. This will call up the specifi-
cation of a coregistration job in the batch editor.

e Highlight “Reference Image” and then select the mean fMRI scan from realignment eg.
meanfM00223_016. img.

e Highlight “Source Image” and then select the structural image eg. sM00223_002.img.
e Press the Save button and save the job as DIR\ jobs\coregister.mat.

e Then press the RUN button.

SPM will then implement a coregistration between the structural and functional data that
maximises the mutual information. The image in figure 30.3 should then appear in the Graphics
window. SPM will have changed the header of the source file which in this case is the structural
image sM00223_002.hdr.

The CHECK REG facility is useful here, to check the results of coregistration. Press the CHECK
REG button in the lower section of the Menu window and then select the “Reference” and “Source”
Images specified above ie meanfM00223_016.img and sM00223_002.img. SPM will then produce
an image like that shown in Figure 30.4 in the Graphics window. You can then use your mouse
to navigate these images to confirm that there is an anatomical correspondence.

30.2.3 Segmentation

Press the SEGMENT button. This will call up the specification of a segmentation job in the batch
editor. Highlight the “Volumes” field and then select the subject’s registered anatomical image eg.
sM00223_002. img. Highlight “Save Bias Corrected” and select “Save Bias Corrected”. Highlight
“Deformation Fields” the bottom of the list and select “Forward”. Save the job file as segment .mat
and then press RUN. SPM will segment the structural image using the default tissue probability
maps as priors.
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Figure 30.2: Realignment of Auditory data.
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Figure 30.4: Checking registration of functional and “registered” structural data.
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SPM will create gray and white matter images and bias-field corrected structural image. These
can be viewed using the CHECKREG facility as described in the previous section. Figure 30.5
shows the gray matter image, c1sM0023_002.nii along with the original structural. Figure 30.6
shows the structural and bias-corrected image, msM0023_002.nii.

SPM will also write a deformation field, file y_sM00223_002.nii in the original structural
directory. It contains 3 volumes to encode the x, y and z coordinates. Given that the structural
and functional data are in alignment, this can be used to spatially normalise the functional data.

30.2.4 Normalise

Select NORMALISE (WRITE) from the NORMALISE pulldown menu. This will call up the specifi-
cation of a normalise job in the batch editor.

e Highlight “Data”, select New “Subject”,

e Highlight “Deformation Field” and select the y_sM00223_002.nii file that you created in
the previous section,

e Highlight “Images to Write” and select all of the realigned functional images £MO00* . img.
You can right click over the listed files, choose “Select all” and press “Done”.

e In the “Writing Options”, change “Voxel sizes” from [2 2 2] to [3 3 3]. This step is not
strictly necessary: it will write images out at a resolution closer to that at which they were
acquired.

e Press “Save”, save the job as normalise_functional.mat and then press the RUN button.

SPM will then write spatially normalised files to the functional data directory. These files
have the prefix w.

If you wish to superimpose a subject’s functional activations on their own anatomy? you
will also need to apply the spatial normalisation parameters to their (bias-corrected) anatomical
image. To do this

e Select NORMALISE (WRITE), highlight “Data”, select “New Subject”.

e Highlight “Deformation Field”, select the y_sM00223_002.nii file that you created in the
previous section, press “Done”.

e Highlight “Images to Write”, select the bias-corrected structural eg. msM00223_002.nii,
press “Done”.

e Open “Writing Options”, select voxel sizes and change the default [2 2 2] to [1 1 3] which
corresponds to the original resolution of the images.

e Save the job as normalise_structural.mat and press the RUN button.

30.2.5 Smoothing

Press the SMOOTH button. This will call up the specification of a smooth job in the batch editor.

e Select “Images to Smooth” and then select the spatially normalised files created in the last
section eg. wfx.img. This can be done efficiently by changing the filter in the SPM file
selector to ~wf.*. SPM will then only list those files beginning with letters wf ie. those
that have been spatially normalised.

e Highlight “FWHM” and change [8 8 §] to [6 6 6]. This will smooth the data by 6mm in each
direction.

e Save the job as smooth.mat and press the Run button.

An example of functional image and its smoothed version is displayed on Figure 30.7.

2Beginners may wish to skip this step, and instead just superimpose functional activations on an “average
structural image”.
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Figure 30.5: Gray matter image and “registered” structural image.
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Figure 30.6: Structural image (top) and bias-corrected structural image (bottom). Notice that the
original structural is darker at the top than at the bottom. This non-uniformity has been removed
in the bias-corrected image.
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Figure 30.7: Functional image (top) and 6mm-smoothed functional image (bottom). These images
were obtained using SPM’s “CheckReg” facility.
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30.3 Model specification, review and estimation

Press the “Specify 1st-level” button. This will call up the specification of an fMRI specification
job in the batch editor. Then

e Open the “Timing parameters” option.
e Highlight “Units for design” and select “Scans”.
e Highlight “Interscan interval” and enter 7. That’s the TR in seconds.

e Highlight “Data and Design” and select “New Subject /Session”. Then open the newly created
“Subject/Session” option.

e Highlight “Scans” and use SPM’s file selector to choose the 84 smoothed, normalised func-
tional images ie swfM00223_016.img to swfM00223_099.1img. These can be selected easily
using the ~sw.*’ filter, and select all. Then press “Done”.

e Highlight “Condition” and select “New condition”.

e Open the newly created “Condition” option. Highlight “Name” and enter “listening”. High-
light “Onsets” and enter “6:12:84”. Highlight “Durations” and enter “6”.

e Highlight “Directory” and select the DIR/classical directory you created earlier.
e Save the job as specify.mat and press the Run button.

SPM will then write an SPM.mat file to the DIR/classical directory. It will also plot the
design matrix, as shown in Figure 30.8.

At this stage it is advisable to check your model specification using SPM’s review facility
which is accessed via the “Review” button. This brings up a “design” tab on the interactive
window clicking on which produces a pulldown menu. If you select the first item “Design Matrix”
SPM will produce the image shown in Figure 30.8. If you select “Explore” then “Session 1”7 then
“listening”, SPM will produce the plots shown in Figure 30.9.

If you select the second item on the “Design” tab, “Design Orthogonality”, SPM will produce
the plot shown in Figure 30.10. Columns x; and x5 are orthogonal if the inner product 27 25 = 0.
The inner product can also be written z¥xy = |z1||z2|cosd where |x| denotes the length of x
and 6 is the angle between the two vectors. So, the vectors will be orthogonal if cosf = 0. The
upper-diagonal elements in the matrix at the bottom of figure 30.10 plot cosf for each pair of
columns in the design matrix. Here we have a single entry. A degree of non-orthogonality or
collinearity is indicated by the gray shading.

30.3.1 Estimate

Press the ESTIMATE button. This will call up the specification of an fMRI estimation job in the
batch editor. Then

e Highlight the “Select SPM.mat” option and then choose the SPM.mat file saved in the
classical subdirectory.

e Save the job as estimate.mat and press the Run button.

SPM will write a number of files into the selected directory including an SPM.mat file.

30.4 Inference

After estimation:
e Press “Results”.
e Select the SPM.mat file created in the last section.

This will invoke the contrast manager.
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Figure 30.8: Design matriz: The filenames on the right-hand side of the design matrix indicate
the scan associated with each row.
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Figure 30.9: Exploring the design matriz in Figure 30.8: This shows the time series of
the “listening” regressor (top left), a frequency domain plot of the “listening” regressor (top right)
and the basis function used to convert assumed neuronal activity into hemodynamic activity. In
this model we used the default option - the canonical basis function. The frequency domain plot
shows that the frequency content of the “listening” regressor is above the set frequencies that are
removed by the High Pass Filter (HPF) (these are shown in gray - in this model we accepted the
default HPF' cut-off of 128s or 0.008Hz).
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Figure 30.10: Design Orthogonality: The description above the first column in the design
matriz Sn(1)Listening*bf(1) means that this column refers to the first session of data (in this
analysis there is only 1 session), the name of this condition/trial is ‘listening’ and the trial
information has been convolved with the first basis function (the canonical hemodynamic response).
The constant regressor for session 1 is referred to as Sn(1)Constant. The orthogonality matriz at
the bottom indicates a degree of collinearity between regressors.
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Figure 30.11: The contrast manager
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Figure 30.12: Left: A contrast is entered by specifying the numeric values in the lower window
and the name in the upper window. Right: After contrasts have been specified they can be selected.

30.4.1 Contrast manager

The contrast manager displays the design matrix (surfable) in the right panel and lists specified
contrasts in the left panel. Either “t-contrast” or “F-contrast” can be selected. To examine
statistical results for condition effects

e Select “Define new contrast”

One sided main effects for the listening condition (i.e., a one-sided t-test) can be specified (in
this example) as “1” (listening > rest) and “-1” (rest > listening). SPM will accept estimable
contrasts only. Accepted contrasts are displayed at the bottom of the contrast manager window
in green, incorrect ones are displayed in red. To view a contrast

e Select the contrast name e.g., “listening > rest”.

e Press “Done”.

30.4.2 Masking
You will then be prompted with

o Apply masking ? [none/contrast/image].
e “Specify none”.

Masking implies selecting voxels specified by other contrasts. If “yes”, SPM will prompt for
(one or more) masking contrasts, the significance level of the mask (default p = 0.05 uncorrected),
and will ask whether an inclusive or exclusive mask should be used. Exclusive will remove all
voxels which reach the default level of significance in the masking contrast, inclusive will remove
all voxels which do not reach the default level of significance in the masking contrast. Masking
does not affect p-values of the “target” contrast, it only includes or excludes voxels.

30.4.3 Thresholds
You will then be prompted with

e p value adjustment to control: [FWE/none].
— Select “FWE”.

o p value(family-wise error).
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Figure 30.13: SPM showing bilateral activation of auditory cortex.

— Accept the default value, 0.05.

A Family Wise Error (FWE) is a false positive anywhere in the SPM. Now, imagine repeating
your experiment many times and producing SPMs. The proportion of SPMs containing FWEs is
the FWE rate. A value of 0.05 implies that on average 1 in 20 SPMs contains one or more false
positives somewhere in the image.

If you choose the “none” option above this corresponds to making statistical inferences at
the “voxel level”. These use “uncorrected” p values, whereas FWE thresholds are said to use
“corrected” p-values. SPM’s default uncorrected p-value is p=0.001. This means that the prob-
ability of a false positive at each voxel is 0.001. So if, you have 50,000 voxels you can expect
50,000 x 0.001 = 50 false positives in each SPM.

You will then be prompted with

e Extent Threshold {vozels} [0].

— Accept the default value, “0”.

Entering a value k here will produce SPMs with clusters containing at least k voxels. SPM
will then produce the SPM shown in Figure 30.13.

30.4.4 Files

A number of files are written to the working directory at this time. Images containing weighted
parameter estimates are saved as con_0001.nii, con_0002.nii, etc. in the working directory.
Images of T-statistics are saved as spmT_0001.nii, spmT_0002.nii etc., also in the working
directory.

30.4.5 Maximum Intensity Projections

SPM displays a Maximum Intensity Projection (MIP) of the statistical map in the Graphics
window. The MIP is projected on a glass brain in three orthogonal planes. The MIP is surfable:
right-clicking in the MIP will activate a pulldown menu, left-clicking on the red cursor will allow
it to be dragged to a new position.
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Figure 30.14: SPM’s Interactive window during results assessment. The “p-values” section is used
to produce tables of statistical information. The visualisation section is used to plot responses at
a vozel or to visual activations overlaid on anatomical images. The “Multivariate” section, ie.
the “eigenvariate” button, is used to extract data for subsequent analyses such as assessment of
PsychoPhysiological Interactions (PPIs) or Dynamic Causal Models (DCMs).
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table shows 3 local maxima more han 8.0mm apart
Height threshold: T =5.25, p =0.000 (0.050) Degrees of freadom = [1.0, 73.0]
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Figure 30.15: Volume table for ‘“listening > rest” effect. This table of values was created by
pressing the SPM Figure > Results Table option at the top of the Graphics window and then
pressing the “whole brain” button. This displays the table of results in a separate window.

30.4.6 Design matrix

SPM also displays the design matrix with the selected contrast. The design matrix is also surfable:
right-clicking will show parameter names, left-clicking will show design matrix values for each scan.
In the SPM Interactive window (lower left panel) a button box appears with various options
for displaying statistical results (p-values panel) and creating plots/overlays (visualisation panel).
Clicking “Design” (upper left) will activate a pulldown menu as in the “Explore design” option.

30.4.7 Statistical tables

To get a summary of local maxima, press the “whole brain” button in the p-values section of
the Interactive window. This will list all clusters above the chosen level of significance as well
as separate (>8mm apart) maxima within a cluster, with details of significance thresholds and
search volume underneath, as shown in Figure 30.15

The columns in volume table show, from right to left:

X, ¥, z (mm): coordinates in MNI space for each maximum.

peak-level: the chance (p) of finding (under the null hypothesis) a peak with this or a
greater height (T- or Z-statistic), corrected (FWE or FDR)/ uncorrected for search volume.

cluster-level: the chance (p) of finding a cluster with this many (k) or a greater number
of voxels, corrected (FWE or FDR)/ uncorrected for search volume.

set-level: the chance (p) of finding this (¢) or a greater number of clusters in the search
volume.

It is also worth noting that:

e The table is surfable: clicking a row of cluster coordinates will move the pointer in the MIP
to that cluster, clicking other numbers will display the exact value in the MATLAB window
(e.g. 0.000 = 6.1971e-07).

e To inspect a specific cluster (e.g., in this example data set, the right auditory cortex), either
move the cursor in the MIP (by left-clicking and dragging the cursor, or right-clicking the
MIP background which will activate a pulldown menu).
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Figure 30.17: Fitted responses.

e Alternatively, click the cluster coordinates in the volume table, or type the coordinates in
the co-ordinates section of the Interactive window.

It is also possible to produce tables of statistical information for a single cluster of interest
rather than for the whole volume. Firstly, select the relevant cluster in the MIP and then press
the “current cluster” button in the p-values section of the Interactive window. This will show
coordinates and voxel-level statistics for local maxima (>4mm apart) in the selected cluster.
This table is also surfable.

30.4.8 Plotting responses at a voxel

A voxel can be chosen with coordinates corresponding to those in the Interactive window. The
responses at this voxel can then be plotted using the “Plot” button in the visualisation section of
the Interactive window. This will provide you with five further options:

1. Contrast estimates and 90% CI: SPM will prompt for a specific contrast (e.g., listening>rest).
The plot will show effect size and 90% confidence intervals. See eg. Figure 30.16.

2. Fitted responses: Plots adjusted data and fitted response across session/subject. SPM will

prompt for a specific contrast and provides the option to choose different ordinates (“an

R ENAY

explanatory variable”, “scan or time”, or “user specified”). If “scan or time”, the plot will
show adjusted or fitted data with errors added as shown in Figure 30.17.

3. Event-related responses: Plots adjusted data and fitted response across peri-stimulus time.
4. Parametric responses.

5. Volterra kernels.

For plotting event-related responses SPM provides three options
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Figure 30.18: Slices.

1. Fitted response and PSTH (peri-stimulus time histogram): plots mean regressor(s) (ie.
averaged over session) and mean signal + /- SE for each peri-stimulus time bin.

2. Fitted response and 90% CI: plots mean regressor(s) along with a 90% confidence interval.

3. Fitted response and adjusted data: plots regressor(s) and individual data (note that in this
example the data are shown in columns due to the fixed TR/ISI relationship).

Its worth noting that

e The values for the fitted response across session/subject for the selected plot can be displayed
and accessed in the MATLABwindow by typing “Y”. Typing “y” will display the adjusted data.

e “Adjusted” data = adjusted for confounds (e.g., global flow) and high- and low pass filtering.

30.4.9 Overlays

The visualisation section of the Interactive window also provides an overlay facility for anatomical
visualisation of clusters of activation. Pressing “Overlays” will activate a pulldown menu with
several options including:

1. Slices: overlay on three adjacent (2mm) transaxial slices. SPM will prompt for an image
for rendering. This could be a canonical image (see spm_templates.man) or an individual
T1/mean EPI image for single-subject analyses. Beware that the left-right convention in
the display of that option will depend on how your data are actually stored on disk.

2. Sections: overlay on three intersecting (sagittal, coronal, axial) slices. These renderings
are surfable: clicking the images will move the crosshair.

3. Render: overlay on a volume rendered brain.

Thresholded SPMs can be saved as NIfTI image files in the working directory by using the
“Save” button in the Interactive window. In Figures 30.18, 30.19 and 30.20 the ‘listening > rest’
activation has been superimposed on the spatially normalised, bias-corrected anatomical image
wmsM00223_002.nii created earlier.

For the “Render” option we first created a rendering for this subject. This was implemented
by

e “Normalise (Write)” the two images c1sM00223_002.nii and c¢2sM00223_002.nii using
the “Deformation Field” y_sM00223_002.nii and a voxel size of [1 1 1].

e Selecting “Extract Surface” from the “Render” pulldown menu.

e Selecting the gray and white matter images wc1sM00223_002.nii and wc2sM00223_002.nii
created in the first step.

e Saving the results using the default options (Rendering and Surface).
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Figure 30.19: Sections.

Figure 30.20: Render.
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Render (Acrobat Reader required)

Figure 30.21: 3D Rendering using canonical mesh.

SPM plots the rendered anatomical image in the graphics window and saves it as render_-
wc1sM00223_002.mat. The surface image is saved as surf_wc1sM00223_002.mat.

It is also possible to project and display the results on a surface mesh, we are going to
use here one of the canonical mesh distributed with SPM (in MNI space). Press “Overlays”
and choose “Render”, then go in the canonical folder of your SPM installation and select file
cortex_20484.surf.gii (this is a surface mesh stored using the GIfTI format) and you will
obtain a figure similar to 30.21.



Chapter 31

Face fMRI data

As another, more sophisticated example, consider the data from a repetition priming experiment
performed using event-related fMRI. Briefly, this is a 2x2 factorial study with factors “fame”
and “repetition” where famous and non-famous faces were presented twice against a checkerboard
baseline (for more details, see [55]). The subject was asked to make fame judgements by making
key presses. There are thus four event-types of interest; first and second presentations of famous
and non-famous faces, which we denote N1, N2, F1 and F2. The experimental stimuli and timings
of events are shown in Figures 31.1 and 31.2.

Images were acquired using continuous Echo-Planar Imaging (EPI) with TE=40ms, TR=2s
and 24 descending slices (64x64 3x3 mm?), 3mm thick with a 1.5mm gap. The data archive is
available from the SPM website!. This contains 351 Analyze format functional images sM03953_0005_x. {hdr, in
of dimension 64 x 64 x 24 with 3x3x4.5 mm? voxels. A structural image is also provided in Analyze
format (sM03953_0007 . {hdr,img}).

To analyse the data, first create a new directory DIR eg. C:\data\face_rep, in which to
place the results of your analysis. Then create 4 subdirectories (i) jobs, (ii) categorical, (iii)
parametric and (iv) bayesian. As the analysis proceeds these directories will be filled with
job-specification files, design matrices and models estimated using classical or Bayesian methods.

As well as the classical /Bayesian distinction we will show how this data can be analysed from
a parametric as well as a categorical perspective. We will look at the main effects of fame and
repetition and in the parameteric analysis we will look at responses as a function of “lag”; that is,
the number of faces intervening between repetition of a specific face.

Start up MATLAB enter your jobs directory and type spm fmri at the MATLAB prompt.
SPM will then open in fMRI mode with three windows (1) the top-left or “Menu” window, (2)
the bottom-left or “Interactive” window and (3) the right-hand or “Graphics” window. Analysis
then takes place in three major stages (i) spatial pre-processing, (ii) model specification, review
and estimation and (iii) inference. These stages organise the buttons in SPM’s base window.

31.1 Spatial pre-processing

31.1.1 Display

Display eg. the first functional image using the “Display” button. Note orbitofrontal and inferior
temporal drop-out and ghosting. This can be seen more clearly by selecting “Brighten” from the
“Effects” menu in the “Colours” menu from the “SPM Figure” tab at the top of the Graphics
window.

31.1.2 Realignment

Under the spatial pre-processing section of the SPM base window select REALIGN (EST & RES)
from the REALIGN pulldown menu. This will call up a realignment job specification in the batch
editor window. Then

1Face Repetition dataset: http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/
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1st presentation

l 2nd presentation

Non-famous Famous

Figure 31.1: Face repetition paradigm: There were 2 presentations of 26 Famous and 26
Nonfamous Greyscale photographs, for 0.5s each, randomly intermized. The minimal Stimulus
Onset Asynchrony (SOA)=4.5s, with probability 2/3 (ie 1/3 null events). The subject made one
of two right finger key presses denoting whether or not the subject thought the face was famous.
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Figure 31.2: Time series of events.
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Figure 31.3: The SPM base window comprises three sections (i) spatial pre-processing, (i) model
specification, review and estimation and (iii) inference.
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Figure 31.5: Realignment of face data: Movement less than the size of a vozel, which for this
data set is 3mm, is not considered problematic.

Save the job file as eg.

DIR/jobs/realign.mat.

Highlight data, select “New Session”, then highlight the newly created “Session” option.

Press the Run button in the batch editor window (green triangle).

Select “Specify Files” and use the SPM file selector to choose all of your functional images
eg. sM03953_0005_x.img. You should select 351 files.

This will run the realign job which will write realigned images into the directory where the
functional images are. These new images will be prefixed with the letter “r”. SPM will then
plot the estimated time series of translations and rotations shown in Figure 31.5. These data,
the realignment parameters, are also saved to a file eg. rp_sM03953_0005_0006.txt, so that
these variables can be used as regressors when fitting GLMs. This allows movements effects to

be discounted when looking

for brain activations.

SPM will also create a mean image eg. meansM03953_0005_0006.{hdr,img} which will be

used in the next step of spatial processing - coregistration.
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31.1.3 Slice timing correction

Press the SLICE TIMING button. This will call up the specification of a slice timing job in the
batch editor window. Note that these data consist of N=24 axial slices acquired continuously
with a TR=2s (ie TA = TR - TR/N, where TA is the time between the onset of the first and
last slice of one volume, and the TR is the time between the onset of the first slice of one volume
and the first slice of next volume) and in a descending order (ie, most superior slice was sampled
first). The data however are ordered within the file such that the first slice (slice number 1) is
the most inferior slice, making the slice acquisition order [24 23 22 ... 1].

e Highlight “Data” and select “New Sessions”

e Highlight the newly create “Sessions” option, “Specify Files” and select the 351 realigned
functional images using the filter ~r.*.

e Select “Number of Slices” and enter 24.

e Select TR and enter 2.

e Select TA and enter 1.92 (or 2 - 2/24).

e Select “Slice order” and enter 24:-1:1.

e Select “Reference Slice”, and enter 12.

e Save the job as slice_timing.mat and press the “Run” button.

SPM will write slice-time corrected files with the prefix “a” in the functional data directory.

31.1.4 Coregistration

Select COREGISTER (ESTIMATE) from the Coregister pulldown menu. This will call up the
specification of a coregistration job in the batch editor window.

o Highlight “Reference Image” and then select the mean functional image meansM03953_0005_0006. img.
e Highlight “Source Image” and then select the structural image eg. sM03953_0007 . img.

o Press the “Save” button and save the job as coreg. job

e Then press the “Run” button.

SPM will then implement a coregistration between the structural and functional data that
maximises the mutual information. The image in figure 31.6 should then appear in the Graphics
window. SPM will have changed the header of the source file which in this case is the structural
image sM03953_0007 .hdr.

31.1.5 Segmentation

Press the SEGMENT button. This will call up the specification of a segmentation job in the
batch editor window. Highlight the “Volumes” field in “Data > Channels” and then select the
subjects coregistered anatomical image eg. sM03953_0007.img. Change “Save Bias Corrected”
so that it contains “Save Bias Corrected” instead of “Save Nothing”. At the bottom of the list,
select “Forward” in “Deformation Fields”. Save the job file as segment.mat and then press the
Run button. SPM will segment the structural image using the default tissue probability maps
as priors. SPM will create, by default, gray and white matter images and bias-field corrected
structral image. These can be viewed using the CheckReg facility as described in the previous
section. Figure 31.7 shows the gray matter image, c1sM03953_0007 .nii, along with the original
structural?.

SPM will also write a spatial normalisation deformation field file eg. y_sM03953_0007.nii
file in the original structural directory. This will be used in the next section to normalise the
functional data.

2Segmentation can sometimes fail if the source (structural) image is not close in orientation to the MNT tem-
plates. It is generally advisable to manually orient the structural to match the template (ie MNI space) as close as
possible by using the “Display” button, adjusting x/y/z/pitch/roll/yaw, and then pressing the “Reorient” button.
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Figure 31.6: Mutual Information Coregistration of Face data.
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Figure 31.7: Gray matter (top) produced by segmentation of structural image (below).
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31.1.6 Normalise

Select NORMALISE (WRITE) from the NORMALISE pulldown menu. This will call up the specifi-
cation of a normalise job in the batch editor window.

e Highlight “Data”, select “New Subject”.

e Open “Subject”, highlight “Deformation field” and select the y_sM03953_0007.nii file that
you created in the previous section.

e Highlight “Images to write” and select all of the slice-time corrected, realigned functional
images arsM#.img. Note: This can be done efficiently by changing the filter in the SPM
file selector to ~ar.*. You can then right click over the listed files, choose “Select all”. You
might also want to select the mean functional image created during realignment (which
would not be affected by slice-time correction), i.e, the meansM03953_0005_006.img. Then
press “Done”.

e Open “Writing Options”, and change “Voxel sizes” from [2 2 2| to [3 3 3]°.
e Press “Save”, save the job as normalise.mat and then press the Run button.

SPM will then write spatially normalised files to the functional data directory. These files have
the prefix “w”.

If you wish to superimpose a subject’s functional activations on their own anatomy* you
will also need to apply the spatial normalisation parameters to their (bias-corrected) anatomical
image. To do this

e Select NORMALISE (WRITE), highlight ‘Data’, select “New Subject”.

e Highlight “Deformation field”, select the y_sM03953_0007.nii file that you created in the
previous section, press “Done”.

e Highlight “Images to Write”, select the bias-corrected structural eg. msM03953_0007.nii,
press “Done”.

e Open “Writing Options”, select voxel sizes and change the default [2 2 2] to [1 1 1] which
better matches the original resolution of the images [1 1 1.5].

e Save the job as norm_struct.mat and press Run button.

31.1.7 Smoothing

Press the SMOOTH button®. This will call up the specification of a smooth job in the batch editor
window.

e Select “Images to Smooth” and then select the spatially normalised files created in the last
section eg. war*.img.

e Save the job as smooth.mat and press Run button.

This will smooth the data by (the default) 8mm in each direction, the default smoothing
kernel width.

3This step is not strictly necessary. It will write images out at a resolution closer to that at which they were
acquired. This will speed up subsequent analysis and is necessary, for example, to make Bayesian fMRI analysis
computationally efficient.

4Beginners may wish to skip this step, and instead just superimpose functional activations on an “canonical
structural image”.

5The smoothing step is unnecessary if you are only interested in Bayesian analysis of your functional data.
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Figure 31.8: Functional image (top) and 8mm-smoothed functional image (bottom). These images
were plotted using SPM’s “CheckReg” facility.
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31.2 DModelling categorical responses

Before setting up the design matrix we must first load the Stimulus Onsets Times (SOTSs) into
MATLAB . SOTs are stored in the sots.mat file in a cell array such that eg. sot{1} contains
stimulus onset times in TRs for event type 1, which is N1. Event-types 2, 3 and 4 are N2, F1
and F2.5

e At the MATLAB command prompt type load sots

Now press the SPECIFY 1ST-LEVEL button. This will call up the specification of a fMRI
specification job in the batch editor window. Then

e For “Directory”, select the “categorical” folder you created earlier,
e In the “Timing parameters” option,

e Highlight “Units for design” and select “Scans”,

e Highlight “Interscan interval” and enter 2,

e Highlight “Microtime resolution” and enter 24,

e Highlight “Microtime onset” and enter 12. These last two options make the creating of
regressors commensurate with the slice-time correction we have applied to the data, given
that there are 24 slices and that the reference slice to which the data were slice-time corrected
was the 12th (middle slice in time).

e Highlight “Data and Design” and select “New Subject/Session”.

e Highlight “Scans” and use SPM’s file selector to choose the 351 smoothed, normalised, slice-
time corrected, realigned functional images ie swarsM.img. These can be selected easily
using the ~swar.* filter, and select all. Then press “Done”.

e Highlight “Conditions” and select “New condition””.

e Open the newly created “Condition” option. Highlight “Name” and enter “N1”. Highlight
“Onsets” and enter sot{1}. Highlight “Durations” and enter 0.

e Highlight “Conditions” and select “Replicate condition”.

e Open the newly created “Condition” option (the lowest one). Highlight “Name” and change
to “N2”. Highlight “Onsets” and enter sot{2}.

e Highlight “Conditions” and select “Replicate condition”.

e Open the newly created “Condition” option (the lowest one). Highlight “Name” and change
to “F1”. Highlight “Onsets” and enter sot{3}.

e Highlight “Conditions” and select “Replicate condition”.

e Open the newly created “Condition” option (the lowest one). Highlight “Name” and change
to “F2”. Highlight “Onsets” and enter sot{4}.

e Highlight “Multiple Regressors” and select the realignment parameter file rp_sM03953_0005_0006. txt

file that was saved during the realignment preprocessing step in the folder containing the
fMRI data®.

6Unlike previous analyses of these data in SPM99 and SPM2, we will not bother with extra event-types for the
(rare) error trials.

"It is also possible to enter information about all of the conditions in one go. This requires much less but-
ton pressing and can be implemented by highlighting the “Multiple conditions” option and then selecting the
all-conditions.mat file, which is also provided on the webpage.

81t is also possible to enter regressors one by one by highlighting “Regressors” and selecting “New Regressor” for
each one. Here, we benefit from the fact that the realignment stage produced a text file with the correct number
of rows (351) and columns (6) for SPM to add 6 regressors to model (linear) rigid-body movement effects.
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Figure 31.9: Design matrizx.

e Highlight “Factorial Design”, select “New Factor”, open the newly created “Factor” option,
highlight “Name” and enter “Fam”, highlight “Levels” and enter 2.

e Highlight “Factorial Design”, select “New Factor”, open the newly created “Factor” option,
highlight “Name” and enter “Rep”, highlight “Levels” and enter 2°.

e Open “Canonical HRF” under “Basis Functions”. Select “Model derivatives” and select “Time
and Dispersion derivatives”.

e Highlight “Directory” and select the DIR/categorical directory you created earlier.

e Save the job as categorical_spec.mat and press the Run button.

SPM will then write an SPM.mat file to the DIR/categorical directory. It will also plot the
design matrix, as shown in Figure 31.9.

9The order of naming these factors is important - the factor to be specified first is the one that “changes slowest”
ie. as we go through the list of conditions N1, N2, F1, F2 the factor “repetition” changes every condition and the
factor “fame” changes every other condition. So “Fam” changes slowest and is entered first.
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At this stage it is advisable to check your model specification using SPM’s review facility
which is accessed via the “Review” button. This brings up a “Design” tab on the interactive
window clicking on which produces a pulldown menu. If you select the first item “Design Matrix”
SPM will produce the image shown in Figure 31.9. If you select “Explore” then “Session 17 then
“N1”, SPM will produce the plots shown in Figure 31.10.

31.2.1 Estimate

Press the ESTIMATE button. This will call up the specification of an fMRI estimation job in the
batch editor window. Then

e Highlight the “Select SPM.mat” option and then choose the SPM.mat file saved in the
DIR/categorical directory.

e Save the job as categorical_est.job and press Run button.

SPM will write a number of files into the selected directory including an SPM.mat file.

31.2.2 Inference for categorical design

Press “Results” and select the SPM.mat file from DIR/categorical. This will again invoke the
contrast manager. Because we specified that our model was using a “Factorial design” a number
of contrasts have been specified automatically, as shown in Figure 31.11.

e Select contrast number 5. This is a t-contrast Positive effect of condition_1 This
will show regions where the average effect of presenting faces is significantly positive, as
modelled by the first regressor (hence the _1), the canonical HRF. Press ‘Done”.

o Apply masking ? [None/Contrast/Image/

e Specify None.

o p value adjustment to control: [FWE/none/
o Select FWE

e Corrected p value(family-wise error)

e Accept the default value, 0.05

o Extent threshold {vozels} [0]

e Accept the default value, 0.

SPM will then produce the MIP shown in Figure 31.12.

31.2.3 Statistical tables

To get a summary of local maxima, press the “whole brain” button in the p-values section of
the interactive window. This will list all clusters above the chosen level of significance as well
as separate (>8mm apart) maxima within a cluster, with details of significance thresholds and
search volume underneath, as shown in Figure 31.12

The columns in volume table show, from right to left:

e X, Yy, z (mm): coordinates in MNT space for each maximum.

e peak-level: the chance (p) of finding (under the null hypothesis) a peak with this or a
greater height (T- or Z-statistic), corrected (FWE or FDR)/ uncorrected for search volume.

e cluster-level: the chance (p) of finding a cluster with this many(ke) or a greater number
of voxels, corrected (FWE or FDR)/ uncorrected for search volume.
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Figure 31.10: Exploring the design matrix in Figure 31.9. This shows the time series of the
“N17 regressor (top left), the three basis functions used to convert assumed neuronal activity into
hemodynamic activity (bottom left), and a frequency domain plot of the three regressors for the
basis functions in this condition (top right). The frequency domain plot shows that the frequency
content of the “N1” condition is generally above the set frequencies that are removed by the High
Pass Filter (HPF') (these are shown in gray - in this model we accepted the default HPF cut-off

of 128s or 0.008Hz).
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SPM contrast manager E=NEEE X

## fype} - name
- Average effect of condition
- Main effect of Fam
- Main effect of Rep
~ Interaction” Fam x Rep
- Positive effect of condition_1
- Positive effect of condition_2
- Positive effect of condition_3
- Positive effect of Fam_1
- Positive effect of Fam_2
- Positive effect of Fam_3
. Positive effect of Rep_1
. Positive effect of Rep_2
- Positive effact of Rep_3
- Positive Interaction: Fam x Rep_1
- Positive Interaction: Fam x Rep_2

Selected 0 contrasts.

Figure 31.11: Contrast Manager containing default contrasts for categorical design.

e set-level: the chance (p) of finding this (c) or a greater number of clusters in the search
volume.

Right-click on the MIP and select “goto global maximum”. The cursor will move to [39
-70 -14]. You can view this activation on the subject’s normalised, bias-corrected structural
(wmsM03953_0007img), which gives best anatomical precision, or on the normalised mean func-
tional (wmeansM03953_0005_0006.nii), which is closer to the true data and spatial resolution
(including distortions in the functional EPI data).

If you select “plot” and choose “Contrast of estimates and 90% C.I” (confidence interval),
and select the “Average effect of condition” contrast, you will see three bars corresponding to
the parameter estimates for each basis function (summed across the 4 conditions). The BOLD
impulse response in this voxel loads mainly on the canonical HRF, but also significantly (given
that the error bars do not overlap zero) on the temporal and dispersion derivatives (see next
Chapter).

31.2.4 F-contrasts

To assess the main effect of repeating faces, as characterised by both the hrf and its derivatives, an
F-contrats is required. This is really asking whether repetition changes the shape of the impulse
response (e.g, it might affect its latency but not peak amplitude), at least the range of shapes
defined by the three basis functions. Because we have told SPM that we have a factorial design,
this required contrast will have been created automatically - it is number 3.

e Press “Results” and select the SPM.mat file in the DIR/categorical directory.

Select the “F-contrast” toggle and the contrast number 3, as shown in Figure 31.13. Press
“Done”.

Apply masking ? [None/Contrast/Image].

Specify “Contrast”.

e Select contrast 5 - Positive effect of condition_1 (the T-contrast of activation versus
baseline, collapsed across conditions, that we evaluated above)
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