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The use of a rotating coordinate system to solve magnetic resonance problems is described. On a coordi-
nate system rotating with the applied rotating magnetic field the e6'ective Geld is reduced by the Larmor
Geld appropriate to the rotational frequency. However, on such a coordinate system problems can more
readily be solved since there is no time variation of the field. The solution in a stationary frame of reference
is then obtained by a transformation from the rotating to the stationary frame. This procedure is equally
valid in classical and in quantum-mechanical problems. The method is applied both to the molecular beam
magnetic resonance method and to resonance absorption and nuclear induction experiments.

I. INTRODUCTION

HE theory of the va, rious molecular beam magnetic
resonance methods and of the resonance absorp-

tion and nuclear induction experiments is usually
chieQy concerned with the calculation of the eGect of
weak oscillating or rotating magnetic fields on nuclear
Inagnetic moments in the presence of a strong constant
magnetic field. Some of the simplest problems of this
sort were first solved by Rabi, ' Schwinger, ' and Bloch' 4

by a straightforward quantum-mechanical calculation
of transition probabilities or by related methods. Al-
though these methods are consistent with and closely
related to the one described here, they are not as well
suited to the simplified analysis of many more com-
plicated problems. The extensive and explicit use of
the rotating coordinate system was first developed by
successive contributions of Bloch4 and the present
authors' over eight years ago. Since the method was
originally considered chieQy as a new technique of
calculation rather than as an intrinsically new result, no
attempt was made to describe the method in the
literature. However, in subsequent time it has become
apparent that the value of the method in nuclear res-

' I. I. Rabi, Phys. Rev. 51, 652 (193'7).' J. Schwinger, Phys. Rev. 51, 648 (1937); Rabi, Ramsey, and
Schwinger, Private communications and lecture notes (1945 on).' F. Bloch and A. J. Siegert, Phys. Rev. 57, 522 (1940); L.
Alvarez and F. Bloch, Phys. Rev. 57, 111 (1940).'F. Bloch, Phys. Rev. 70, 460 (1946); R. K. Wangsness and
F. Bloch, Phys. Rev. 89, 728 (1953).

onance calculations is so great that a detailed descrip-
tion of it is needed. This need is sufficiently great that
several authors' ' have had to include a partial descrip-
tion of the rotating coordinate method in order to
describe their experiments electively.

The rotating coordinate system method is equally
applicable to classical and quantum-mechanical systems.
Because of the great simplicity and extensive appli-
cability of the classical description it will be given first
in detail while the quantum-mechanical case will be
considered in the last section of this paper.

II. CLASSICAL FORMULATION OF ROTATING
COORDINATES PROCEDURE

Consider a system consisting of one or more nuclei or
atoms all of which have the same constant gyromag-
netic ratio y. Then, if I is the nuclear angular momen-
tum in units of k, the nuclear magnetic moment is
yhl and the equation of motion of the system in a sta-
tionary coordinate system is

dI
h,—= q&&H=~hi&&H.

dt

But if 8/itt represents differentiation with respect to
a coordinate system that is rotating with angular

'
¹ Bloembergen, iVttctear Magnetic Retaxation (Schotanus and

Jens, Utrecht, Holland).' H. C. Torrey, Phys. Rev. 76, 1060 (1949).' E. L. Hahn, Phys. Rev. 80, 580 (1950).
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QJ/y = QJ k/p

system is much simpler in the rotating coordinate sys-
tem than in the stationary system F. rom Eq. (6) it
follows that the magnitude of the effective magnetic
field is

j ~„.
~

=$(IIp a/p)—'+H is]l=a/y,

FIG. 1. Fffective magnetic held in the rotating
coordinate system.

velocity ~,
dI BI—=—+ppXI,
dt Bt

(2)

where H, „is the effective field in the rotating coordinate
system and is defined by

H,„=H+ pi/y. (4)

In other words, the eGect of the rotation of the coordi-
nate system is merely to change the eGective field by
the added term ep/y.

This result can readily be applied to interpret the
effect of the rotating magnetic fields used in the various
nuclear resonance experiments. In most of these there
is a constant field Hp about which another (usually
much weaker) field Hi perpendicular to Hp rotates with
angular velocity —~. However, from the point of view
of a coordinate system rotating with Hi, none of the
magnetic fields are changing as a function of time.
Therefore, the axes of the rotating coordinate system
can be selected so that

Hp ——Hpk, H, = EE,~, p~ = —&uk.

Then on the rotating coordinate system,

H„= (Hp —(u/y)k+Hii (6)

as is shown schematically in Fig. 1. Since this field is
constant in time the solution to the motion of the

where I on both sides of the equation is the angular
momentum as measured by the stationary observer,
but the BI/Bt represents how a rotating observer would
find the stationary observer's I to vary as a function
of time. By rearrangement Eq. (2) becomes

eli
h—=ykIX (H+ep/y) =ykIXH, „,

Bt

a
0=Herr= Her+

7
(10)

Hence, from (7) if n is a unit vector parallel to H, „,

a= —yH, „=—an,

where a is the quantity previously defined in Eq. (8).
As is shown in a later section of the present report,

the above considerations apply to a quantum-me-
chanical as well as to a classical system. Consequently,
either classically or quantum mechanically on the
doubly rotating coordinate system with the two rota-
tional angular velocities ~ and a, there is no effective
resultant field and the state of the system remains con-
stant in time.

III. CLASSICAL INTERPRETATION OF NUCLEAR
RESONANCE EXPERIMENTS

The above can be directly applied to various problems
arising in nuclear resonance experiments. Although
oscillating instead of rotating fields are usually used in
these experiments the problems can usually be treated
as ones involving a rotating field since an oscillating
field is equivalent to two opposite rotating fields and
only the component rotating in direction to be able
to give a resonance in Eq. (8) has an important effect
in most problems. ' As a first application the method
can be used to demonstrate the criterion for the rate

' F. Bloch and A. J. Siegert, Phys. Rev. 57, 522 (1940).

with ~p by defininition being pHp. Likewise the angle
0 of H,„relative to Hp is given by

cosO'= (&up
—pp)/a sinO= (a»Hi/Hp)/a. (9)

From this it is apparent that when rp=Np 0=90' and
a magnetic moment initially parallel to Hp can precess
about H„until it becomes antiparallel to Hp. In other
words, such a moment can have its orientation relative
to Hp changed most completely when co=cop so Mp can
be considered as the resonance frequency of the system.

If one next goes to a second rotating coordinate sys-
tem which rotates about H,„with a suitable angular
velocity, the effective field H„„ in the doubly rotating
system can be reduced to zero. In this doubly rotating
coordinate system the problems become trivial since
there is then no magnetic field and consequently no
change in the orientation of I. If a is the angular velocity
about H„which reduces H,„,to zero, a must be deter-
mined by
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of change of a field to be "adiabatic, " i.e., to be such
that a nuclear moment preserves its magnetic quantum
number (classically its angle) relative to the field as
the field is moved. Let the field be rotated with angular
velocity —orI. Then for this problem, in the notation of
the previous section, Ho is zero and HI is the full field
H. On the rotating coordinate system then

H,„=(—~,/p)k+Hi. (12)

which can be written alternatively as

i
HXHi/a «~e. (14)

The use of the rotating coordinate system also
provides a simple pictorial interpretation of the transi-
tion process that occurs in the molecular beam magnetic
resonance method originally introduced by Rabi. ' A
singly rotating coordinate system rotating with the
oscillator frequency —or can be used throughout. Prior
to the molecule reaching the rotating field region H~
equals zero and H„has the value (Hs —&u/p)k. As the
molecule enters the transition region where the rotating
field is being established H, „changes. Conditions are
usually such that near resonance the condition of Eq.
(14) applied to H, „ is violated. Consequently the transi-
tion under such circumstances is not adiabatic and the
nuclear moments do not follow H,„as Hr is established.
After Pr achieves its full value H, „ is (Ps—"/y)k+Hri
and the nuclei precess about this effective field. When
the molecules leave the rotating field region B„again
changes too rapidly for the nuclei to follow and they are
left with the orientation relative to the s axis to which
they have precessed in the region of the rotating field.
At exact resonance this precession is about a field Hr
which is perpendicular to the original direction of the
field and consequently the change of orientation can
be large.

The qualitative analysis of the preceding paragraph
can be also expressed quantitatively. Assume the I
is initially parallel to Hp. Then in therotating coordinate
system I will precess about H,„with the precession
angle 0' and at an angular velocity a. If a is the angle
between Hs and I, the simple geometry of the above
precession is such that after a time interval t2 —tI,

cosa=cos'0~+sin'O~ cosa(ts —tr)

a(ts —tr)=1—2 sin'O~ sin'

On the other hand, as shown in the next section, the
quantum-mechanical angular momentum operators
satisfy the same Eq. (1). Since this equation is linear

'Kusch, Miilman, and Rabi, Phys. Rev. SS, 666 (1939);
Kellogg, Rabi, Ramsey, and Zacharias, Phys. Rev. 55, 318 (1939).

The nuclei will then preserve their orientation relative
to H provided H„ is approximately equal to Hi or that

~",~«ap,

the expectation values satisfy the same equation. There-
fore, a correspondence between the classical and
quantum-mechanical solutions can be established by
requiring them to agree on their predicted average s
component and on the total probability. If I'~~ is the
probability of a system of spin ~ being in the state of
magnetic quantum number m equal to &-,' these re-
quirements are

Therefore,

I'~—I' ~=cosQ,

Pt+P-;=1. (16)

1—cosa G(ts tr)—
= sin'0" sin'

(~oai/EZs)'

(cop —co)'+ (copHr/EIp)'

a(ts —tr)
sin' . (17)

As proved in Sec. V, this is exactly the same result that
is obtained from a pure quantum-mechanical calculation.

Likewise the rotating coordinate system analysis
procedure is applicable to the molecular beam resonance
method with separated oscillating fields introduced by
Ramsey. "In this case, the description through the first
oscillating held is just the same as in the preceding
paragraph. After leaving the oscillating field in this
method the nucleus enters an intermediate region
where there is only IXO so the magnitude of H& is zero.
Relative to the singly rotating coordinate system, the
nucleus in this region precesses about (Hp —cv/p)k
until it reaches the second oscillating field. As a result
of this precession the nucleus will in general have a
diBerent orientation relative to H,„ in the second
rota, ting field region than it did in the first. On the
other hand, if the average value of Hs —a&/y in the in-
termediate region is zero the orientation of the nucleus
relative to H, „ is the same in the second oscillating field
region as in the first. This will be true regardless of the
velocity of the molecule. However, if the average of
8',—co/y has any value other than zero, the orientation
of the nucleus relative to H, „ in the second field is
difterent from that in the first and the magnitude of
the difference will depend upon the velocity of the
molecule. When the combined eGects of the two rota, ting
field regions are averaged over the velocity of the mole-
cules, it is therefore found that the transition prob-
ability is a maximum for or equal to the average value
of yIIO in the intermediate region.

The rotating coordinate system procedure is also of
value in interpreting the various nuclear resonance ab-
sorption and induction experiments based on the original
experiments of Purcell" and Bloch." Experiments of
these types have by now been carried out in a number
of different ways. One of the marked differences has been

' N. F. Ramsey, Phys. Rev. 78, 695 (&,950).
"Purcell, Torrey, and Pound, Phys. Rev. 69, 37 (1946).
~ Bloch, Hansen, and Packard, Phys. Rev. 69, 127 (1946).
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in the extent' to which the adiabatic condition of Eq.
(14) is satisffed for H,„. In some experiments a large
value of the rotating 6eld HI has been used and the
6eld H p has been varied about the resonance value at
a sufficiently slow rate that Eq. (14) was satisfied. In
this case the original magnetism,

Mo ——xHp,

simply retains its orientation relative to H,„ in the
singly rotating coordinate system and the dominant
eGect of the small changes in Hp ls to change the orienta-
tion of H,„and hence Mo. Therefore the x component
of this in the rotating system varies with Hp as

Mgv pPi/Pp
M =Mpcose= (19)

t (a 0
—(o)'+ ((ooPi/Ho)']&

3f, then goes through a resonance maximum at co=~p.
However, as the coordinate system and hence M are
rotating with frequency co relative to the laboratory
system, the resulting rotating magnetic moment will

induce a signal in a suitably placed coil.
Actually the preceding case rarely applies since the

local magnetic 6elds from neighboring molecules cause
the nuclei to return to the thermal equilibrium relative
to Ho and to lose their phase coherency about Ho. The
characteristic time constants for these processes are con-
ventionally designated T& and T&.4 From the point of
view of the singly rotating frame of reference, TI is the
characteristic time for resuming thermal equilibrium
about the z axis, and T2 is the characteristic time con-
stant for losing coherency about that axis, i.e., for the
g and y components of the magnetization to average
to zero. Although the preceding results are not directly
applicable when these relaxation eGects are important,
they are nevertheless of value in many approximate
calculations even then. For example, if T&«T&, Ti«1/
yH, , and (T,Ti)'«1/yHi, the rate of absorption of
energy at resonance in a nuclear resonance absorption
experiment with nuclei of spin 2 can roughly be approxi-
mated by the assumption that the transition goes as in
Eq. (17) but is stopped by the loss of all coherency
after a time T~. At exact resonance and for a time T.,
Eqs. (17) and (8) give for the transition probability

P;=sin'(yHiTi/2) =4y'BPT~'. (20)-

The average rate TV of transition per nucleus is then
approximately given by

Other limiting cases with the various relaxation
processes have been discussed in the literature. 4 ' "As
has been discussed by Hahn, ' the rotating coordinate
system procedure is particularly well suited to the de-
scription of the spin echo phenomena.

(k/i)dI/dt= Px, Ij=hei —IK,

where the Hamiltonian 3C is taken as

(23)

x= —ykI H. (24)

Alternatively, from a wave mechanical point of view,
the Schrodinger equation for the problem relative to
a stationary coordinate system is

iVi4 =X%=—ykI H%. (25)

However, in quantum mechanics the Rnite rotation
operator'4 for the coordinates to be rotated an angle i
about an axis along which the system's angular momen-
tum, I, has the component Ir is the unitary operator
exp(ifIr). Let 4' and H be the wave function and
field relative to a stationary coordinate system whereas
V„and H„are the same quantities relative to coordinates
rotating with angular velocity u. These quantities are
related by the unitary transformation so that"

%=exp( —i~ It)%„, (26)

I H„=exp(im It)I.H exp( —ie It). (27)

If Eq. (26) is substituted in Eq. (25) and if Eq. (27) is
used to simplify the resulting expression one immedi-
ately obtains

ik+„=—~kI (H„y~/7)e„= —~hI H„e„, (28)

where H„ is given by Eq. (4), with the understanding
that H is to be expressed relative to the rotating coordi-
nate system. This result justifies the application of the
previous discussions to quantum-mechanical as well as
classical systems.

IV. QUANTUM-MECHANICAL FORMULATION OF
ROTATING COORDINATES PROCEDURE

Relation (4) derived above can be proved equally
well quantum mechanically as classically. As indicated
in the previous section, one procedure is simply to say
that Eq. (1) applies to the quantum-mechanical angular
momentum operators. Equation (1) can in fact easily
be proved to follow from the standard operator relation

W =P *,/Ti —'y'BPTg. —-(21)
V. QUANTUM-MECHANICAL CALCULATION OF

TRANSITION PROBABILITY

Therefore, the average rate R of net absorption of
energy is approximated by

P= Wn k(o= (1/8)y'HPTp:Vk'oP/kT (22)

where n, =-,'Eke&/kT is the number of surplus nuclei
in the lowest energy state, Ã is the total number of
nuclei present, ken is the energy separation of the two
orientation states, and T is the absolute temperature.

The probabilities for transition of the system from
a state of one magnetic quantum number to another
can readily be calculated with the above procedure.
Consider the case discussed earlier in which the mag-

"Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 {1948).
'4 E. C. Kemble, J Nndementel I'rirIczples of Qmentmm 3feclzunzcs

{McGraw-Hill Book Company, Inc. , New York), pp. 247, 307,
and 532.
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In general, the numerical evaluation of (33) is some-
what cumbersome because of the noncommutativity of
the terms in the exponent. However, a series expansion
of the exponential may be used. In the special case of
spin i~, it becomes much simplified for then I=~n,
where e is the Pauli spin matrix. Since for the Pauli
spin matrix (n n)' equals one, the series expansion of
the above exponential together with the series expansion

erely give

netic 6elds are given by Eq. (5) and assume that up
to time tI the magnitude of H~ is zero after which it is
HI until time t2. As use will be made of the stationary,
singly, and doubly rotating coordinate systems pre-
viously discussed, wave functions relative to these three
systems will be designated as %(t), 'k„(t), and 4,„(t),
respectively. Since H,„,for the doubly rotating coordi-
nates is zero,

(29)

a(t,-t,) a(t, —t,)=cos +in n sin

4„(t2)=4'„(ti)=@,(ti).
for sine and cosine m

However, as the doubly rotating system between times ex zexp Z— q
—I ne

ti and t~ has rotated an angle —a(t~ —ti) relative to the & 2 j
singly rotating system one must use the previous finite
rotation operator to relate 4'„„(t2) and %,(t2) with the
result that 2

4'„(t )=exp (ia[t,—t,$n. I)4„„(t,).
Hence from (29),

4', (t2) =exp(ia[t2 —t&)n I)@„(ti).

(30) a(t2 —ti) a (t,—t,)
=cos +i(g, sinO.~+0., cosO) sin — . (34)

2 2

Therefore

In a similar fashion, this can be reduced to a non-
rotating coordinate system with the result

a(t,—t,)P;;=sin'0' sin'
2

(35)

@(t2)=exp(ia&t2k. I)exp(ia[t2 —tijn I)
Xexp( —icatik I)+(ti). (32)

It should be noted, however, that because of the com-
ponents of I not commuting, one cannot perform all
the operations appropriate to exponentials of ordinary
numbers; instead, the exponentials may be taken as
de6ned by their series expansion.

From the above, the transition probability from a
state m to a state m' can be calculated by taking 0 (ti)

in which case

P ~ =~ (4, @(t)~2= (m'j exp(i~dt2k. I)
Xexp(ia[t2 —ti]n I)exp( —icotk I) (m) ('

=
t
(m'[ exp(ia[t2 —ti]n I) (m) ('. (33)

The last simplifying step is a consequence of 0 and
4' ~ being eigenfunctions of k. I.

which is the desired transition probability that is
applicable to the conventional molecular beam res-
onance method. ~ It should be noted that the above
agrees with the classically derived expression in Eq. (17).

This procedure may also be used to calculate the
transition probability applicable to the molecular beam
resonance method with separated oscillating 6elds. "In
this case, Eq. (32) can be applied separately to the first
oscillating 6eld region, to the intermediate region, and
to the second oscillating field region. The resulting three
equations can then be combined to express the anal
state of the system in terms of the initial state and
from this the transition probabilities can be calculated
as in Eq. (25).
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