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A Quadrature Signals Tutorial: Complex, But Not Complicated 

 

by Richard Lyons 

 

Introduction 

Quadrature signals are based on the notion of complex numbers and perhaps no 

other topic causes more heartache for newcomers to DSP than these numbers and 

their strange terminology of j-operator, complex, imaginary, real, and 

orthogonal.  If you're a little unsure of the physical meaning of complex 

numbers and the j = -1  operator, don't feel bad because you're in good 

company.  Why even Karl Gauss, one the world's greatest mathematicians, called 

the j-operator the "shadow of shadows".  Here we'll shine some light on that 

shadow so you'll never have to call the Quadrature Signal Psychic Hotline for 

help. 

 

Quadrature signal processing is used in many fields of science and 

engineering, and quadrature signals are necessary to describe the processing 

and implementation that takes place in modern digital communications systems.  

In this tutorial we'll review the fundamentals of complex numbers and get 

comfortable with how they're used to represent quadrature signals.  Next we 

examine the notion of negative frequency as it relates to quadrature signal 

algebraic notation, and learn to speak the language of quadrature processing.  

In addition, we'll use three-dimensional time and frequency-domain plots to 

give some physical meaning to quadrature signals.  This tutorial concludes 

with a brief look at how a quadrature signal can be generated by means of 

quadrature-sampling. 

 

Why Care About Quadrature Signals? 

Quadrature signal formats, also called complex signals, are used in many 

digital signal processing applications such as: 

 

  - digital communications systems,  

  - radar systems, 

  - time difference of arrival processing in radio direction 

     finding schemes 

  - coherent pulse measurement systems,  

  - antenna beamforming applications, 

  - single sideband modulators, 

  - etc. 

 

These applications fall in the general category known as quadrature 

processing, and they provide additional processing power through the coherent 

measurement of the phase of sinusoidal signals. 

 

A quadrature signal is a two-dimensional signal whose value at some instant in 

time can be specified by a single complex number having two parts; what we 

call the real part and the imaginary part.  (The words real and imaginary, 

although traditional, are unfortunate because of their meanings in our every 

day speech.  Communications engineers use the terms in-phase and quadrature 

phase.  More on that later.)  Let's review the mathematical notation of these 

complex numbers.  

 

The Development and Notation of Complex Numbers 

To establish our terminology, we define a real number to be those numbers we 

use in every day life, like a voltage, a temperature on the Fahrenheit scale, 

or the balance of your checking account.  These one-dimensional numbers can be 

either positive or negative as depicted in Figure 1(a).  In that figure we 

show a one-dimensional axis and say that a single real number can be 

represented by a point on that axis.  Out of tradition, let's call this axis, 

the Real axis. 
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Figure 1.  An graphical interpretation of a real number and a complex number. 

 

A complex number, c, is shown in Figure 1(b) where it's also represented as a 

point.  However, complex numbers are not restricted to lie on a one-

dimensional line, but can reside anywhere on a two-dimensional plane.  That 

plane is called the complex plane (some mathematicians like to call it an 

Argand diagram), and it enables us to represent complex numbers having both 

real and imaginary parts.  For example in Figure 1(b), the complex number 

c = 2.5 + j2 is a point lying on the complex plane on neither the real nor the 

imaginary axis.  We locate point c by going +2.5 units along the real axis and 

up +2 units along the imaginary axis.  Think of those real and imaginary axes 

exactly as you think of the East-West and North-South directions on a road 

map. 

 

We'll use a geometric viewpoint to help us understand some of the arithmetic 

of complex numbers.  Taking a look at Figure 2, we can use the trigonometry of 

right triangles to define several different ways of representing the complex 

number c. 
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Figure 2  The phasor representation of complex number c = a + jb on the complex 

plane. 

 

Our complex number c is represented in a number of different ways in the 

literature, such as: 

 

Notation 

Name: 

Math 

Expression: 

Remarks:  

Rectangular 

form:  

 

c = a + jb Used for explanatory purposes.  

Easiest to understand. [Also 

called the Cartesian form.] 

(1) 

Trigonometric 

form:  

c = 

M[cos() + 

jsin()] 

Commonly used to describe 

quadrature signals in 

communications systems. 

(2) 

Polar form:  

  
c = Me

j
  

Most puzzling, but the primary 

form used in math equations. [Also 

called the Exponential  form.  

Sometimes written as Mexp(j).]  

(3) 

Magnitude-

angle form:  
c = M  Used for descriptive purposes, but 

too cumbersome for use in 

algebraic equations. [Essentially 

a shorthand version of Eq. (3).]  

(4) 

 

Eqs. (3) and (4) remind us that c can also be considered the tip of a phasor 

on the complex plane, with magnitude M, in the direction of  degrees relative 
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to the positive real axis as shown in Figure 2.  Keep in mind that c is a 

complex number and the variables a, b, M, and  are all real numbers.  The 
magnitude of c, sometimes called the modulus of c, is 

 

    M = |c| = a2 + b2                                   (5)  

 

[Trivia question:  In what 1939 movie, considered by many to be the greatest 

movie ever made, did a main character attempt to quote Eq. (5)?] 

 

 
 

 

OK, back to business.  The phase angle , or argument, is the arctangent of 

the ratio 
imaginary part

real part ,  or 

 

     = tan -1 



 b 

 a 
                                 (6)  

 

If we set Eq. (3) equal to Eq. (2), Me
j
 = M[cos() + jsin()] , we can state 

what's named in his honor and now called one of Euler's identities as: 

 

    e
j
 =  cos() + jsin()                          (7)  

 

The suspicious reader should now be asking, "Why is it valid to represent a 

complex number using that strange expression of the base of the natural 

logarithms, e, raised to an imaginary power?"  We can validate Eq. (7) as did the 

world's greatest expert on infinite series, Herr Leonard Euler, by plugging j in 

for z in the series expansion definition of e
z
 in the top line of Figure 3.  That 

substitution is shown on the second line.  Next we evaluate the higher orders of 

j to arrive at the series in the third line in the figure.  Those of you with 

elevated math skills like Euler (or those who check some math reference book) 

will recognize that the alternating terms in the third line are the series 

expansion definitions of the cosine and sine functions. 

 

   e
z
 = 1 + z + 

 z2 

2!
 + 

 z3 

3!
 + 

 z4 

4!
 + 

 z5 

5!
 + 

 z6 

6!
 + ...  

   e
j
 = 1 + j + 

 (j)2 
2!

 + 
 (j)3 

3!
 + 

 (j)4 
4!

 + 
 (j)5 

5!
 + 

 (j)6 
6!

 + ...  

       = 1  +  j  - 
 2 
2!

  - j 
 3 
3!

  +  
 4 
4!

  + j 
 5 
5!

  - 
 6 
6!

  + ...  

 

                        e
j
 =   cos() + jsin() 

 

Figure 3  One derivation of Euler's equation using series expansions for e
z
, cos(), 

and sin(). 
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Figure 3 verifies Eq. (7) and our representation of a complex number using the 

Eq. (3) polar form: Me
j
.  If you substitute -j for z in the top line of 

Figure 3, you'd end up with a slightly different, and very useful, form of 

Euler's identity: 

 

    e
-j

 =  cos() - jsin()                   (8)  

 

The polar form of Eqs. (7) and (8) benefits us because: 

 

 - It simplifies mathematical derivations and analysis, 

  -- turning trigonometric equations into the simple algebra of exponents, 

  -- math operations on complex numbers follow exactly the same rules as  

     real numbers. 

 - It makes adding signals merely the addition of complex numbers (vector  

   addition), 

 - It's the most concise notation,  

 - It's indicative of how digital communications system are implemented, and  

   described in the literature. 

 

We'll be using Eqs. (7) and (8) to see why and how quadrature signals are used 

in digital communications applications.  But first, let’s take a deep breath 

and enter the Twilight Zone of that 'j' operator. 

 

You've seen the definition j = -1 before.  Stated in words, we say that j 

represents a number when multiplied by itself results in a negative one.  

Well, this definition causes difficulty for the beginner because we all know 

that any number multiplied by itself always results in a positive number.   

 

  Unfortunately DSP textbooks often define the symbol j and  

  then, with justified haste, swiftly carry on with all the ways  

  that the j operator can be used to analyze sinusoidal signals.   

  Readers soon forget about the question: What does j = -1  

  actually mean?   

 

Well, -1 had been on the mathematical scene for some time, but wasn't taken 

seriously until it had to be used to solve cubic equations in the sixteenth 

century. [1], [2]  Mathematicians reluctantly began to accept the abstract 

concept of -1, without having to visualize it, because its mathematical 

properties were consistent with the arithmetic of normal real numbers. 

 

It was Euler's equating complex numbers to real sines and cosines, and Gauss' 

brilliant introduction of the complex plane, that finally legitimized the 

notion of -1 to Europe's mathematicians in the eighteenth century.  Euler, 

going beyond the province of real numbers, showed that complex numbers had a 

clean consistent relationship to the well-known real trigonometric functions 

of sines and cosines.  As Einstein showed the equivalence of mass and energy, 

Euler showed the equivalence of real sines and cosines to complex numbers.  

Just as modern-day physicists don’t know what an electron is but they 

understand its properties, we’ll not worry about what 'j' is and be satisfied 

with understanding its behavior.  For our purposes, the j-operator means 

rotate a complex number by 90o counterclockwise.  (For you good folk in the 

UK, counterclockwise means anti-clockwise.)  Let's see why. 

 

We'll get comfortable with the complex plane representation of imaginary 

numbers by examining the mathematical properties of the j = -1 operator as 

shown in Figure 4. 
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Figure 4.  What happens to the real number 8 when you start multiplying it by j. 

 

Multiplying any number on the real axis by j results in an imaginary product 

that lies on the imaginary axis.  The example in Figure 4 shows that if +8 is 

represented by the dot lying on the positive real axis, multiplying +8 by j 

results in an imaginary number, +j8, whose position has been rotated 90o 

counterclockwise (from +8) putting it on the positive imaginary axis.  

Similarly, multiplying +j8 by j results in another 90o rotation yielding the -

8 lying on the negative real axis because j2 = -1.  Multiplying -8 by j 

results in a further 90o rotation giving the -j8 lying on the negative 

imaginary axis.  Whenever any number represented by a dot is multiplied by j, 

the result is a counterclockwise rotation of 90o.  (Conversely, multiplication 

by -j results in a clockwise rotation of -90o on the complex plane.) 

 

If we let  = /2 in Eq. 7, we can say that  
 

    e
j/2

 = cos(/2) + jsin(/2) = 0 + j1 , or 

    e
j/2

 = j                                           (9)  

 

Here's the point to remember.  If you have a single complex number, 

represented by a point on the complex plane, multiplying that number by j or 

by e
j/2

 will result in a new complex number that's rotated 90o 

counterclockwise (CCW) on the complex plane.  Don't forget this, as it will be 

useful as you begin reading the literature of quadrature processing systems!  

 

Let's pause for a moment here to catch our breath.  Don't worry if the ideas 

of imaginary numbers and the complex plane seem a little mysterious.  It's 

that way for everyone at first—you'll get comfortable with them the more you 

use them.  (Remember, the j-operator puzzled Europe's heavyweight 

mathematicians for hundreds of years.)  Granted, not only is the mathematics 

of complex numbers a bit strange at first, but the terminology is almost 

bizarre.  While the term imaginary is an unfortunate one to use, the term 

complex is downright weird.  When first encountered, the phrase complex 

numbers makes us think 'complicated numbers'.  This is regrettable because the 

concept of complex numbers is not really all that complicated.  Just know that 

the purpose of the above mathematical rigmarole was to validate Eqs. (2), (3), 

(7), and (8).  Now, let's (finally!) talk about time-domain signals. 

 

Representing Real Signals Using Complex Phasors 

OK, we now turn our attention to a complex number that is a function time.  

Consider a number whose magnitude is one, and whose phase angle increases with 

time.  That complex number is the e
j2fot point shown in Figure 5(a).  (Here 

the 2fo term is frequency in radians/second, and it corresponds to a 
frequency of fo cycles/second where fo is measured in Hertz.)  As time t gets 

larger, the complex number's phase angle increases and our number orbits the 

origin of the complex plane in a CCW direction.  Figure 5(a) shows the number, 
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represented by the black dot, frozen at some arbitrary instant in time.  If, 

say, the frequency fo = 2 Hz, then the dot would rotate around the circle two 

times per second.  We can also think of another complex number e
-j2fot (the 

white dot) orbiting in a clockwise direction because its phase angle gets more 

negative as time increases. 

 

t = time in seconds,

fo = frequency in Hertz

Imaginary 
axis

0 Real  
axis–1

1

j

–j

e

 = 2fot

 = –2fot

e

(a)

Imaginary 
axis
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axis–1

1

j

–j

e

e

(b)

j2fot

–j2fot

j2fot

–j2fot

 = –2fot

 = 2fot

 
 

Figure 5.  A snapshot, in time, of two complex numbers whose exponents change 

with time. 

 

Let's now call our two e
j2fot and e

-j2fot complex expressions  quadrature 

signals.  They each have quadrature real and imaginary parts, and they are 

both functions of time.  Those e
j2fot and e

-j2fot expressions are often called 

complex exponentials in the literature. 

 

We can also think of those two quadrature signals, e
j2fot and e

-j2fot, as the 

tips of two phasors rotating in opposite directions as shown in Figure 5(b).  

We're going to stick with this phasor notation for now because it'll allow us 

to achieve our goal of representing real sinusoids in the context of the 

complex plane.  Don't touch that dial!   

 

To ensure that we understand the behavior of those phasors, Figure 6(a) shows 

the three-dimensional path of the e
j2fot phasor as time passes.  We've added 

the time axis, coming out of the page, to show the spiral path of the phasor.  

Figure 6(b) shows a continuous version of just the tip of the e
j2fot phasor.  

That e
j2fot complex number, or if you wish, the phasor's tip, follows a 

corkscrew path spiraling along, and centered about, the time axis.  The real 

and imaginary parts of e
j2fot are shown as the sine and cosine projections in 

Figure 6(b). 
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Figure 6.  The motion of the e
j2fot phasor (a), and phasor 's tip (b). 

 

Return to Figure 5(b) and ask yourself: "Self, what's the vector sum of those 

two phasors as they rotate in opposite directions?"  Think about this for a 

moment...  That's right, the phasors' real parts will always add 

constructively, and their imaginary parts will always cancel.  This means that 

the summation of these e
j2fot and e

-j2fot phasors will always be a purely real 

number.  Implementations of modern-day digital communications systems are 

based on this property! 

 

To emphasize the importance of the real sum of these two complex sinusoids 

we'll draw yet another picture.  Consider the waveform in the three-

dimensional Figure 7 generated by the sum of two half-magnitude complex 

phasors, e
j2fot/2 and e

-j2fot/2,  rotating in opposite directions around, and 

moving down along, the time axis.   

 

Time
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e
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Figure 7.  A cosine represented by the sum of two rotating complex phasors. 

 

Thinking about these phasors, it's clear now why the cosine wave can be 

equated to the sum of two complex exponentials by 

 

  cos(2fot) = 
 e

jfot + e
-jfot  

2
 = 

 e
jfot  

2
 + 

 e
-jfot  

2
 .    (10)  

 

Eq. (10), a well-known and important expression, is also called one of Euler's 

identities.  We could have derived this identity by solving Eqs. (7) and (8) 

for jsin(), equating those two expressions, and solving that final equation 
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for cos().  Similarly, we could go through that same algebra exercise and 
show that a real sine wave is also the sum of two complex exponentials as 

 

  sin(fot) = 
e
jfot - e

-jfot  

2j
 = 

 j e
-jfot  

2
 – 

 j e
jfot  

2
 .    (11)  

 

Look at Eqs. (10) and (11) carefully.  They are the standard expressions for a 

cosine wave and a sine wave, using complex notation, seen throughout the 

literature of quadrature communications systems.  To keep the reader's mind 

from spinning like those complex phasors, please realize that the sole purpose 

of Figures 5 through 7 is to validate the complex expressions of the cosine 

and sine wave given in Eqs. (10) and (11).  Those two equations, along with 

Eqs. (7) and (8), are the Rosetta Stone of quadrature signal processing.  

 

 cos(2f
o
t) =

e
2

e j2f
o
t

2
+

-j2f
o
t

 
 

We can now easily translate, back and forth, between real sinusoids and 

complex exponentials.  Again, we are learning how real signals, that can be 

transmitted down a coax cable or digitized and stored in a computer's memory, 

can be represented in complex number notation.  Yes, the constituent parts of 

a complex number are each real, but we're treating those parts in a special 

waywe're treating them in quadrature. 

 

Representing Quadrature Signals In the Frequency Domain 

Now that we know something about the time-domain nature of quadrature signals, 

we're ready to look at their frequency-domain descriptions.  This material is 

critical because we’ll add a third dimension, time, to our normal two-

dimensional frequency domain plots.  That way none of the phase relationships 

of our quadrature signals will be hidden from view.  Figure 8 tells us the 

rules for representing complex exponentials in the frequency domain.   

 

–j2fote
2

e j2fot

2
–jj

Negative
 frequency

Magnitude is 1/2

Positive
 frequency

Direction along the 
 imaginary axis

 
 

Figure 8.  Interpretation of complex exponentials. 

 

We'll represent a single complex exponential as a narrowband impulse located 

at the frequency specified in the exponent.  In addition, we'll show the phase 

relationships between the spectra of those complex exponentials along the real 

and imaginary axes of our complex frequency domain representation.  With all 

that said, take a look at Figure 9. 
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Figure 9.  Complex frequency domain representation of a cosine wave and sine 

wave. 

 

See how a real cosine wave and a real sine wave are depicted in our complex 

frequency domain representation on the right side of Figure 9.  Those bold 

arrows on the right of Figure 9 are not rotating phasors, but instead are 

frequency-domain impulse symbols indicating a single spectral line for a 

single complex exponential e
j2fot.  The directions in which the spectral 

impulses are pointing merely indicate the relative phases of the spectral 

components.  The amplitude of those spectral impulses are 1/2.  OK ... why are 

we bothering with this 3-D frequency-domain representation?  Because it's the 

tool we'll use to understand the generation (modulation) and detection 

(demodulation) of quadrature signals in digital (and some analog) 

communications systems, and those are two of the goals of this tutorial.  

However, before we consider those processes let's validate this frequency-

domain representation with a little example. 

 

Figure 10 is a straightforward example of how we use the complex frequency 

domain.  There we begin with a real sine wave, apply the j operator to it, and 

then add the result to a real cosine wave of the same frequency.  The final 

result is the single complex exponential e
j2fot illustrating graphically 

Euler's identity that we stated mathematically in Eq. (7). 
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Figure 10.  Complex frequency-domain view of Euler's: e
j2fot = cos(2fot) + 

jsin(2fot). 

 

On the frequency axis, the notion of negative frequency is seen as those 

spectral impulses located at -2fo radians/sec on the frequency axis.  This 
figure shows the big payoff: When we use complex notation, generic complex 

exponentials like e
j2ft

 and e
-j2ft

 are the fundamental constituents of the 

real sinusoids sin(2ft) or cos(2ft).  That's because both sin(2ft) and 
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cos(2ft) are made up of e
j2ft and e

-j2ft
 components.  If you were to take the 

discrete Fourier transform (DFT) of discrete time-domain samples of a 

sin(2fot) sine wave, a cos(2fot) cosine wave, or a e
j2fot complex sinusoid and 

plot the complex results, you'd obtain exactly those narrowband impulses in 

Figure 10. 

 

If you understand the notation and operations in Figure 10, pat yourself on 

the back because you know a great deal about the nature and mathematics of 

quadrature signals. 

 

Bandpass Quadrature Signals In the Frequency Domain 

In quadrature processing, by convention, the real part of the spectrum is 

called the in-phase component and the imaginary part of the spectrum is called 

the quadrature component.  The signals whose complex spectra are in Figure 

11(a), (b), and (c) are real, and in the time domain they can be represented 

by amplitude values that have nonzero real parts and zero-valued imaginary 

parts.  We're not forced to use complex notation to represent them in the time 

domain—the signals are real.  

 

Real signals always have positive and negative frequency spectral components.  

For any real signal, the positive and negative frequency components of its in-

phase (real) spectrum always have even symmetry around the zero-frequency 

point.  That is, the in-phase part's positive and negative frequency 

components are mirror images of each other.  Conversely, the positive and 

negative frequency components of its quadrature (imaginary) spectrum are 

always negatives of each other.  This means that the phase angle of any given 

positive quadrature frequency component is the negative of the phase angle of 

the corresponding quadrature negative frequency component as shown by the thin 

solid arrows in Figure 11(a).  This 'conjugate symmetry' is the invariant 

nature of real signals when their spectra are represented using complex 

notation. 
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Figure 11.  Quadrature representation of signals: (a) Real sinusoid cos(2fot + ), 
(b) Real bandpass signal containing six sinusoids over bandwidth B; (c) 

Real bandpass signal containing an infinite number of sinusoids over 

bandwidth B Hz; (d) Complex bandpass signal of bandwidth B Hz. 

 

Let's remind ourselves again, those bold arrows in Figure 11(a) and (b) are 

not rotating phasors.  They're frequency-domain impulse symbols indicating a 

single complex exponential e
j2ft

.  The directions in which the impulses are 

pointing show the relative phases of the spectral components. 

 

There's an important principle to keep in mind before we continue.  
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Multiplying a time signal by the complex exponential e
j2fot, what we can call 

quadrature mixing (also called complex mixing), shifts that signal's spectrum 

upward in frequency by fo Hz as shown in Figure 12 (a) and (b).  Likewise, 

multiplying a time signal by e
-j2fot shifts that signal's spectrum down in 

frequency by fo Hz. 

 

(b) (c)(a)

Freq

0
fo

–fo

Quad. phase

In-phase

Freq

0
fo

–fo

Quad. phase

In-phase

Freq

0
fo

–fo

Quad. phase

In-phase

2fo

 
 

Figure 12.  Quadrature mixing of a signal: (a) Spectrum of a complex signal x(t), 

(b) Spectrum of x(t)e
j2fot

, (c) Spectrum of x(t)e
-j2fot

. 

 

 

A Quadrature-Sampling Example 

We can use all that we've learned so far about quadrature signals by exploring 

the process of quadrature-sampling.  Quadrature-sampling is the process of 

digitizing a continuous (analog) bandpass signal and translating its spectrum 

to be centered at zero Hz.  Let's see how this popular process works by 

thinking of a continuous bandpass signal, of bandwidth B, centered about a 

carrier frequency of fc Hz. 

 

Freq0 f c 
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X(f)

Freq (m)0 

X(m)

Original  

Continuous  

Spectrum 
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"Baseband"  

Spectrum
f s –f

s 
 

 

Figure 13.  The 'before and after' spectra of a quadrature-sampled signal. 

 

Our goal in quadrature-sampling is to obtain a digitized version of the analog 

bandpass signal, but we want that digitized signal's discrete spectrum 

centered about zero Hz, not fc Hz.  That is, we want to mix a time signal with 

e
-j2fct to perform complex down-conversion.  The frequency fs is the 

digitizer's sampling rate in samples/second.  We show replicated spectra at 

the bottom of Figure 13 just to remind ourselves of this effect when A/D 

conversion takes place. 

 

OK, ... take a look at the  following quadrature-sampling block diagram known 

as I/Q demodulation (or 'Weaver demodulation' for those folk with experience 

in communications theory) shown at the top of Figure 14.  That arrangement of 

two sinusoidal oscillators, with their relative 90o phase difference, is often 

called a quadrature-oscillator.  

 

Those e
j2fct and e

-j2fct terms in that busy Figure 14 remind us that the 

constituent complex exponentials comprising a real cosine duplicates each part 

of the Xbp(f) spectrum to produce the Xi(f) spectrum.  The Figure shows how we 

get the filtered continuous in-phase portion of our desired complex quadrature 

signal.  By definition, those Xi(f) and I(f) spectra are treated as 'real 
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only'.     
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Figure 14.  Quadrature-sampling block diagram and spectra within the in-phase 

(upper) signal path. 

 

Likewise, Figure 15 shows how we get the filtered continuous quadrature phase 

portion of our complex quadrature signal by mixing xbp(t) with sin(2fct). 
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Figure 15.  Spectra within the quadrature phase (lower) signal path of the block 

diagram. 

 

Here's where we're going: I(f) - jQ(f) is the spectrum of a complex replica of 

our original bandpass signal xbp(t).  We show the addition of those two 

spectra in Figure 16. 
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Figure 16.  Combining the I(f) and Q(f) spectra to obtain the desired 

'I(f) - jQ(f)' spectra. 

 

This typical depiction of quadrature-sampling seems like mumbo jumbo until you 

look at this situation from a three-dimensional standpoint, as in Figure 17, 

where the -j factor rotates the 'imaginary-only' Q(f) by -90o, making it 

'real-only'.  This -jQ(f) is then added to I(f). 
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Figure 17.  3-D view of combining the I(f) and Q(f) spectra to obtain the 

I(f) - jQ(f) spectra. 

 

The complex spectrum at the bottom Figure 18 shows what we wanted, a digitized 

version of the complex bandpass signal centered about zero Hz. 
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Figure 18.  The continuous complex signal i(t) - q(t) is digitized to obtain 

discrete i(n) - jq(n). 

 

 

Some advantages of this quadrature-sampling scheme are: 

 

  - Each A/D converter operates at half the sampling rate of standard  

    real-signal sampling,  

  - In many hardware implementations operating at lower clock rates save  

    power. 

  - For a given fs sampling rate, we can capture wider-band analog signals. 

  - Quadrature sequences make FFT processing more efficient due to covering  

    a wider frequency range than when an FFT’s input is a real-valued  

    sequence. 

  - Because quadrature sequences are effectively oversampled by a factor of  

    two, signal squaring operations are possible without the need for  

    upsampling.  

  - Knowing the phase of signals enables coherent processing. 

  - Quadrature-sampling makes it easier to measure the instantaneous  

    magnitude and phase of a signal during demodulation.  

 

Returning to the Figure 14 block diagram reminds us of an important 

characteristic of quadrature signals.  We can send an analog quadrature signal 

to a remote location.  To do so we use two coax cables on which the two real 

i(t) and q(t) signals travel.  (To transmit a discrete time-domain quadrature 

sequence, we'd need two multi-conductor ribbon cables as indicated by Figure 

19.) 
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Figure 19.  Reiteration of how quadrature signals comprise two real 

parts. 

 

To appreciate the physical meaning of our discussion here, let's remember that 

a continuous quadrature signal xc(t) = i(t) + jq(t) is not just a mathematical 
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abstraction.  We can generate xc(t) in our laboratory and transmit it to the 

lab down the hall.  All we need is two sinusoidal signal generators, set to 

the same frequency fo.  (However, somehow we have to synchronize those two 

hardware generators so that their relative phase shift is fixed at 90o.)  Next 

we connect coax cables to the generators' output connectors and run those two 

cables, labeled 'i(t)' for our cosine signal and 'q(t)' for our sine wave 

signal, down the hall to their destination 

 

Now for a two-question pop quiz.  In the other lab, what would we see on the 

screen of an oscilloscope if the continuous i(t) and q(t) signals were 

connected to the horizontal and vertical input channels, respectively, of the 

scope?  (Remembering, of course, to set the scope's Horizontal Sweep control 

to the 'External' position.)   

 

i(t) = cos(2fot)

q(t) = sin(2fot) Vert. In

Horiz. In

O-scope

 
 

Figure 20.  Displaying a quadrature signal using an oscilloscope. 

 

Next, what would be seen on the scope's display if the cables were mislabeled 

and the two signals were inadvertently swapped?   

 

The answer to the first question is that we’d see a bright 'spot' rotating 

counterclockwise in a circle on the scope's display.  If the cables were 

swapped, we'd see another circle, but this time it would be orbiting in a 

clockwise direction.  This would be a neat little demonstration if we set the 

signal generators' fo frequencies to, say, 1 Hz. 

 

This oscilloscope example helps us answer the important question, "When we 

work with quadrature signals, how is the j-operator implemented in hardware?”  

The answer is we can’t go to Radio Shack and buy a j-operator and solder it to 

a circuit board.  The j-operator is implemented by how we treat the two 

signals relative to each other.  We have to treat them orthogonally such that 

the in-phase i(t) signal represents an East-West value, and the quadrature 

phase q(t) signal represents an orthogonal North-South value.  (By orthogonal, 

I mean that the North-South direction is oriented exactly 90o relative to the 

East-West direction.)  So in our oscilloscope example the j-operator is 

implemented merely by how the connections are made to the scope.  The in-phase 

i(t) signal controls horizontal deflection and the quadrature phase q(t) 

signal controls vertical deflection.  The result is a two-dimensional 

quadrature signal represented by the instantaneous position of the dot on the 

scope's display. 

 

A person in the lab down the hall who's receiving, say, the discrete sequences 

i(n) and q(n) has the ability to control the orientation of the final complex 

spectra by adding or subtracting the jq(n) sequence as shown in Figure 21. 
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Figure 21.  Using the sign of q(n) to control spectral orientation. 

 

The top path in Figure 21 is equivalent to multiplying the original xbp(t) by 

e
-j2fct, and the bottom path is equivalent to multiplying the xbp(t) by e

j2fct.  

Therefore, had the quadrature portion of our quadrature-oscillator at the top 
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of Figure 14 been negative, -sin(2fct), the resultant complex spectra would 
be flipped (about 0 Hz) from those spectra shown in Figure 21. 

 

While we’re thinking about flipping complex spectra, let’s remind ourselves 

that there are two simple ways to reverse (invert) an x(n) = i(n) + jq(n) 

sequence’s spectral magnitude.  As shown in Figure 21, we can perform 

conjugation to obtain an x'(n) = i(n) - jq(n) with an inverted magnitude 

spectrum.  The second method is to swap x(n)’s individual i(n) and q(n) sample 

values to create a new sequence y(n) = q(n) + ji(n) whose spectral magnitude 

is inverted from x(n)’s spectral magnitude.  (Note, while  x'(n)’s and y(n)’s 

spectral magnitudes are equal, their spectral phases are not equal.) 

 

Conclusions 

This ends our little quadrature signals tutorial.  We learned that using the 

complex plane to visualize the mathematical descriptions of complex numbers 

enabled us to see how quadrature and real signals are related.  We saw how 

three-dimensional frequency-domain depictions help us understand how 

quadrature signals are generated, translated in frequency, combined, and 

separated.  Finally we reviewed an example of quadrature-sampling and two 

schemes for inverting the spectrum of a quadrature sequence. 
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Answer to trivia question just following Eq. (5) is: The scarecrow in The 

Wizard of Oz. 

 

Have you heard this little story?   

While in Berlin, Leonhard Euler was often involved in philosophical debates, 

especially with Voltaire.  Unfortunately, Euler's philosophical ability was 

limited and he often blundered to the amusement of all involved.  However, when 

he returned to Russia, he got his revenge.  Catherine the Great had invited to 

her court the famous French philosopher Diderot, who to the chagrin of the 

czarina, attempted to convert her subjects to atheism.  She asked Euler to quiet 

him.  One day in the court, the French philosopher, who had no mathematical 

knowledge, was informed that someone had a mathematical proof of the existence of 

God.  He asked to hear it.  Euler then stepped forward and stated:  

  "Sir, 
a + bn

n
 = x, hence God exists; reply!"   

Diderot had no idea what Euler was talking about. However, he did understand the 

chorus of laughter that followed and soon after returned to France. 

 

Although it's a cute story, serious math historians don't believe it.  They 

know that Diderot did have some mathematical knowledge and they just can’t 

imagine Euler clowning around in that way. 

 


